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Abstract

First described in 2009 in Japan, the emerging multidrug-resistant fungal pathogen Candida

auris is becoming a worldwide public health threat that has been attracting considerable

attention due to its rapid and widespread emergence over the past decade. The reasons

behind the recent emergence of this fungus remain a mystery to date. Genetic analyses

indicate that this fungal pathogen emerged simultaneously in several different continents,

where 5 genetically distinct clades of C. auris were isolated from distinct geographical loca-

tions. Although C. auris belongs to the CTG clade (its constituent species translate the CTG

codon as serine instead of leucine, as in the standard code), C. auris is a haploid fungal spe-

cies that is more closely related to the haploid and often multidrug-resistant species Candida

haemulonii and Candida lusitaniae and is distantly related to the diploid and clinically com-

mon fungal pathogens Candida albicans and Candida tropicalis. Infections and outbreaks

caused by C. auris in hospitals settings have been rising over the past several years. Diffi-

culty in its identification, multidrug resistance properties, evolution of virulence factors, asso-

ciated high mortality rates in patients, and long-term survival on surfaces in the environment

make C. auris particularly problematic in clinical settings. Here, we review progress made

over the past decade on the biological and clinical aspects of C. auris. Future efforts should

be directed toward understanding the mechanistic details of its biology, epidemiology, anti-

fungal resistance, and pathogenesis with a goal of developing novel tools and methods for

the prevention, diagnosis, and treatment of C. auris infections.

Introduction

Fungal infections are increasingly recognized as a worldwide threat to human health. About

1.7 billion people worldwide suffer from a fungal infection, most of which are superficial infec-

tions of the skin and mucosa (reviewed by [1]). Candida species are the predominant cause of

nosocomial fungal infections and are the fourth leading cause of all hospital-acquired infec-

tions [2]. Annually, there are approximately 400,000 bloodstream infections caused by Can-
dida species globally, with mortality rates exceeding 40% [1]. The most frequently encountered
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Candida species is Candida albicans; however, the incidence of non-albicans species, such as

Candida tropicalis, Candida parapsilosis, and Candida glabrata, has increased over recent

decades due to the long-term use and limited options of antifungal drugs [3,4].

Candida auris is a newly emerged member of the Candida/Clavispora clade, first isolated in

Japan in 2009 from the ear discharge of a female patient [5]. In the past decade, infections

caused by C. auris have become a global threat due to its rapid emergence worldwide and mul-

tidrug resistance properties. In 2016, the Centers for Disease Control and Prevention (CDC)

released a clinical alert to healthcare facilities warning of the international emergence of C.

auris infections with high mortality rates, and in 2017 provided an update on C. auris spread

throughout the United States of America with disinfection information and treatment recom-

mendations. From its discovery in 2009 until June 2020, C. auris has attracted considerable

attention from both clinical and basic science research fields. Indeed, within that time frame,

nearly 500 scientific articles have been published related to C. auris based on PubMed and

Web of Science databases (Fig 1). As of this year, based on published literature and data from

the CDC (https://www.cdc.gov/), C. auris has been isolated in over 40 countries across 6 conti-

nents (Fig 2). It has also led to several recent outbreaks in hospitals across the globe [6–9]. Of

further concern is the fact that most clinical isolates are resistant to 1 or more classes of the

antifungal drugs typically used to treat Candida infections [10,11]. Taken together, its multi-

drug resistance, rapid global emergence, and high mortality rates make C. auris a particularly

problematic pathogen that has garnered considerable attention from the public, medical com-

munity, and basic research scientists. Here, we review the identification, epidemiology, clinical

manifestations, risk factors, biology, antifungal resistance mechanisms, virulence, genomics

and genetics, and origins of C. auris.

Identification

C. auris was first isolated from the ear canal of a Japanese patient and thus named “auris” [5].

A retrospective study revealed that the earliest isolate of C. auris dates back to 1996, where it

was initially misidentified in South Korea as Candida haemulonii [12]. Cases of C. auris infec-

tions, however, were rare before 2009, suggesting that this fungus is a newly evolved pathogen.

Fig 1. A review of published literature on C. auris between January 2009 and June 2020. (A) Literature published on topics pertaining to C.

auris since its first identification. (B) Number of published articles in each year. Data for the months January to June were collected for the year

2020. A search of published papers between January 2009 and June 2020 was performed using PubMed and Web of Science databases. The

terms “Candida auris” or “C. auris” were used as keywords for database searches. Non-related studies and studies not published in English were

excluded from this analysis.

https://doi.org/10.1371/journal.ppat.1008921.g001
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Analysis of rDNA sequences of the 28S D1/D2 and 18S internal transcribed spacer (ITS)

regions and 50 protein sequences indicates that C. auris belongs to the Metschnikowiaceae

family within the Candida/Clavispora clade (Fig 3) [5,13,14]. C. auris, like other species of the

Candida/Clavispora clade, such as C. albicans, C. tropicalis, C. haemulonii, and Candida lusita-
niae, is a member of the CTG clade. Species within this clade translate the CTG codon as serine

rather than leucine [15].

C. auris can be easily misidentified as C. haemolonii or other yeast species using conven-

tional phenotypic and biochemical methods [16,17]. The growth of C. auris on commercial

CHROMagar medium (CHROMagar, Paris, France) at temperatures up to 42˚C results in

white, pink, or dark purple colonies [18–20]. Unlike other Candida species, C. auris grows well

at 42˚C, and thus this thermal tolerance property is being used to differentiate C. auris from

other Candida species [21]. Matrix-assisted laser desorption ionization-time of flight mass

spectrometry (MALDI-TOF MS) devices can accurately differentiate C. auris from other fun-

gal species; however, the accurate identification of C. auris is dependent on the reference data-

bases included with the MS device [16,22,23]. Polymerase chain reaction (PCR) and molecular

techniques are also widely used for C. auris identification [6,24–27]. Molecular methods based

on sequencing of genetic loci, such as the D1/D2 region of the 28S rDNA or the ITS region of

rDNA, can accurately detect C. auris isolates. Future efforts should combine the rapid identifi-

cation of C. auris isolates with an assessment of their antifungal drug resistance properties.

Trends in epidemiology: The rapid global emergence of C. auris
After the first reports of C. auris infections in clinical settings, a retrospective study was per-

formed in South Korea that found that the earliest isolates of C. auris date back to 1996 [17].

Fig 2. Countries with reported cases of C. auris infection or colonization from January 2009 to June 2020. (A) Number of countries belonging

to each continent that have reported infection or colonization with C. auris. (B) Countries with reported cases from January 2009 to June 2020.

The first reported case from each country is denoted in red text. ARE, United Arab Emirates; AUS, Australia; AUT, Austria; BEL, Belgium; BGD,

Bangladesh; CAN, Canada; CHE, Switzerland; CHL, Chile; CHN, China; COL, Colombia; CRI, Costa Rica; DEU, Germany; EGY, Egypt; ESP,

Spain; FRA, France; GBR, United Kingdom; GRC, Greece; IND, India; IRN, Iran; ISR, Israel; ITA, Italy; JPN, Japan; KEN, Kenya; KOR, Korea

(South); KWT, Kuwait; MYS, Malaysia; NLD, the Netherlands; NOR, Norway; OMN, Oman; PAK, Pakistan; PAN, Panama; POL, Poland; RUS,

Russia; SAU, Saudi Arabia; SDN, Sudan; SGP, Singapore; THA, Thailand; USA, United States of America; VEN, Venezuela; ZAF, South Africa.

https://doi.org/10.1371/journal.ppat.1008921.g002
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These isolates were previously misidentified as C. haemulonii. Analysis of an international sur-

veillance culture collection of Candida isolates (by the SENTRY Antimicrobial Surveillance

Program, 15,271 Candida isolates, collected between 2004 and 2015) identified 4 C. auris iso-

lates that were collected in 2009, 2013, 2014, and 2015, indicating that C. auris appears to be a

recently emerged pathogen [10,28]. This idea is further supported by genomic analyses esti-

mating that the most recent common ancestor of C. auris arose as late as 360 years ago and as

early as 38 years ago for different C. auris subclades. Two studies in India have reported the

identification of several new clonal strains of C. auris as well as amphotericine B- and flucona-

zole-resistant isolates [29,30]. Subsequently, C. auris–associated infections have been reported

in South Africa, Europe, and America [31–33]. In 2016, the CDC, the European Centre for

Disease Prevention and Control (ECDC), and Public Health England released a series of alerts

to inform healthcare providers about C. auris as a new infectious agent. Lockhart and col-

leagues (2017) published the landmark study reporting the genomic and epidemiological anal-

yses of different genetic populations of C. auris strains that emerged nearly simultaneously

across 3 different continents [10]. C. auris isolates have since emerged worldwide in at least 40

countries to date (Fig 2).

There are 4 major discrete genetic clades of C. auris based on genetic and genomic informa-

tion and locations of first isolates: the South Asia Clade (I), the East Asia Clade (II), the South

Africa Clade (III), and the South America Clade (IV) (Fig 4). Within each clade, sequencing

data indicate that there are very few single-nucleotide polymorphisms (SNPs), typically less than

Fig 3. Maximum-likelihood phylogeny of the CTG and WGD clade species. The phylogenic tree was generated

using the program RAxML v7.3.2 using 50 protein sequences aligned with Mafft-homologs. The GTR model, gamma

distribution, and 1,000 bootstraps were used to construct the phylogenetic relationships. Pathogenic characteristics (P),

ploidy (H or D), and multidrug resistance (M) for each species are also shown. CTG, the CTG clade; Deb,

Debaryomycetaceae; GTR, generalized time reversible; Met, Metschnikowiaceae; WGD, the Whole Genomic

Duplication clade.

https://doi.org/10.1371/journal.ppat.1008921.g003
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70 SNPs [10]. Recently, a potential new C. auris clade (Clade V, Fig 4) has been reported in Iran;

interestingly, this clade is separated from the other clades by greater than 200,000 SNPs [34].

Clinical manifestations

C. auris has been isolated from multiple infection sites throughout the body and is generally

hospital acquired. Clinicians have isolated it from urine, bile, blood, wounds, the nares, the

axilla, the skin, and the rectum of infected individuals (reviewed by [16,35]). Unlike C. albi-
cans, which colonizes the gastrointestinal (GI) and genitourinary tracts of the most healthy

individuals, C. auris is hypothesized to predominantly colonize the skin; however, in rare

instances, it has been isolated from the gut, oral, and esophageal mucosa of infected individuals

[10]. Consistent with the rarity of isolating C. auris in the gut, clinical manifestations and in

vivo experiments together suggest that C. auris is incapable of colonizing anaerobic environ-

ments like the gut [36]. In terms of the oral mucosa, a recent study found that the salivary anti-

microbial peptide histatin 5 has a potent antifungal effect on C. auris [37]. This peptide may

limit the colonization of the C. auris in the oral mucosa and explain with it is rarely isolated

Fig 4. Five clades of C. auris. The phylogenic tree was generated with the program RAxML v7.3.2 using SNPs. The

GTR model, gamma distribution, and 1,000 bootstraps were used to construct the phylogenetic relationships. The

MTL are also included for each clade. CHN, China; COL, Colombia; DEU, Germany; GBR, United Kingdom; GTR,

generalized time reversible; IND, India; IRN, Iran; JPN, Japan; KOR, Korea (South); MTL, mating type loci; NLD, the

Netherlands; PAK, Pakistan; RUS, Russia; SGP, Singapore; SNPs, single-nucleotide polymorphisms; USA, United

States of America; VEN, Venezuela describe the country where the strain was first isolated; ZAF, South Africa.

https://doi.org/10.1371/journal.ppat.1008921.g004
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from this area. In clinical settings, C. auris is most commonly associated with bloodstream

infections [22]. One study found that approximately 5% of candidemia cases in intensive care

units (ICUs) in India were caused by C. auris [38]. Invasive infections caused by C. auris occur

more frequent in critically ill patients in ICUs. Similar to other invasive Candida infections,

invasive C. auris infections are associated with high global mortality rates ranging from 30% to

60% [10,39,40].

Risk factors

Risk factors for C. auris infections are similar to those for other Candida species. This is not

surprising given that many Candida species are opportunistic pathogens and are primarily

associated with critically ill and immunocompromised patients. Risk factors for C. auris infec-

tions include elderly age, diabetes mellitus, recent surgery, the presence of an indwelling medi-

cal device (e.g., central venous catheter), an immunosuppressed state, the use of hemodialysis,

a neutropenic state, chronic renal disease, or the use of broad-spectrum antibiotic and/or anti-

fungal drugs [6,7,23,38,41,42]. In a study that retrospectively analyzed available patient data, it

was determined that an increase in C. auris colonization or infection was associated with diar-

rhea and the use of the broad-spectrum antibiotic tetracycline as well as the second-generation

tetracycline derivatives minocycline and tigecycline [42]. These studies highlight a diverse set

of risk factors associated with C. auris infections.

Biology

Pathogenic Candida species, such as C. albicans, C. tropicalis, C. parapsilosis, and C. auris, but

not C. glabrata, belong to the CTG clade. Species within this clade translate the CTG codon

into serine instead of leucine [15]. Similar to other Candida species, C. auris can form biofilms,

undergo filamentation, and phenotypically change between specific cell types [12,32,43–45].

These characteristics may be associated with virulence, antifungal tolerance, and survival in

natural and host niches.

Adaptation to environmental stresses. There are an estimated 1.5–5.1 million fungal

species on Earth ranging from single-celled yeasts to multicellular fungi [46]. Interestingly,

most fungi are unable to survive at human physiological temperatures (36.5–37.5˚C and up to

40˚C during a fever) and are thus unable to colonize humans and cause infections. Strikingly,

it has been found that unlike its closely related Candida species, C. auris can grow at high tem-

peratures (>40˚C) [41,47,48]. Indeed, a recent study comparing the temperature tolerance of

C. auris to other Candida species hypothesized that climate change, specifically global warm-

ing, may have contributed to the evolution of C. auris as a human pathogen and to its ability to

grow at high temperatures [21].

Another trait of C. auris is its ability to tolerate high salt concentrations (>10% NaCl, wt/

vol) compared to other Candida species [41,48]. Two studies found that C. auris forms pseudo-

hyphae-like morphologies in response to high salt concentrations, which suggests that this

morphological transition may be adaptive under stressful conditions [41,48].

Thermotolerance and osmotolerance are characteristics that may contribute to the persis-

tence and survival of C. auris on biotic and abiotic surfaces for long periods of time [8,49,50].

Indeed, C. auris is known to survive on human skin and environmental surfaces for several

weeks and can even tolerate being exposed to some commonly used disinfectants. Persistence

on surfaces may contribute to the frequently observed intrahospital transmission of C. auris
within healthcare settings. For example, an outbreak of C. auris at the neurosciences ICU of

the Oxford University Hospitals in the United Kingdom was linked to the use of reusable
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axillary temperature probes [51]. Persistence in harsh environmental conditions is a hallmark

feature of C. auris that distinguishes it from the majority of other human fungal pathogens.

Morphological transitions. Morphological plasticity is a common strategy used by

microorganisms to rapidly adapt to environmental changes [52,53]. Both bacterial and fungal

species can undergo morphological transitions under certain environmental conditions. Path-

ogenic Candida species such as C. albicans and C. tropicalis can undergo a number of morpho-

logical transitions [54–56]. They can switch between several different cell types spontaneously

or in response to environmental cues. Two well-characterized morphological transitions in C.

albicans and C. tropicalis, for example, are the yeast–hyphal transition and the white-opaque

switch. In these species, morphological plasticity plays critical roles in pathogenesis and mating

[54–56].

Like other pathogenic Candida species, C. auris also has several morphological phenotypes

[12,19,41,43], although the regulatory mechanisms and roles of each morphology in C. auris
are largely unknown. Many isolates of C. auris exist in the single-cell yeast form. However, a

portion of natural C. auris isolates can form large aggregates of pseudohyphal-like cells, where

mother and daughter cells remain attached [32,44]. These aggregates are generally more toler-

ant to antifungal agents than their non-aggregating counterparts; however, aggregating cells

display reduced virulence compared to non-aggregating cells in the Galleria mellonella infec-

tion model [32]. The formation of these pseudohyphal-like aggregates in C. auris could be due

to a defect in cell division. Consistent with this hypothesis, a recent study demonstrated that

induction of DNA damage and perturbation of replication forks by genotoxic stresses pro-

moted pseudohyphal-like formation in C. auris [57].

Colony phenotypic switching. It was recently demonstrated that C. auris colonies can

undergo morphological transitions between pink, white, and dark purple colony phenotypes

when grown on CHROMagar [19]. The switch frequencies observed for transitioning between

these distinct C. auris phenotypes appear to be higher than the white-opaque switch frequen-

cies observed for C. albicans [54,58]. In C. albicans, white-opaque switching is a heritable tran-

sition between 2 different cell types called “white” and “opaque” that have distinct virulence

properties, mating competencies, and antifungal resistance properties [59]. White cells are

round; are smaller than opaque cells; and form smooth, white, and shiny colonies on nutrient

agar medium containing the red dye phloxine B; opaque cells, on the other hand, are elon-

gated; are larger than white cells; and form pink, flat, and rough colonies on nutrient agar

medium containing phloxine B [58]. It is unclear whether the phenotypic switch between

pink, white, and dark purple colonies observed in C. auris is heritable. The initial report of this

phenotypic switch in C. auris did not provide cellular images of the morphologies of the cells

within the different colored colonies [19]. Based on the reported colony morphologies, we

believe that it is possible that this phenotypic switch observed in C. auris is likely similar to

the core phenotypic switch system observed in C. glabrata when it is grown on nutrient agar

medium containing copper(II) sulfate or phloxine B [60]. In C. glabrata, 4 colony phenotypes

were observed, namely the white, light brown, dark brown, and very dark brown phenotypes.

The gradation of colors across colonies is believed to reflect the accumulation of copper sulfite,

the by-product of copper(II) sulfate reduction. Similarly, the phenotypic switch between pink,

white, and dark purple colonies observed in C. auris could also reflect distinct cellular oxida-

tive/reductive states [19]. However, it is unknown whether this C. auris colony phenotypic

switch is heritable and whether it is associated with virulence and/or antifungal resistance.

Given the similarities observed between colony phenotypic switches of C. auris and C. glab-
rata, it seems likely that this switch in C. auris could be associated with the regulation of cellu-

lar redox states and adaptation to environmental stresses.
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Filamentation. Filamentous (hyphal or pseudohyphal) cell growth of pathogenic Candida
species is critical for fungal invasion of host tissues [55,56]. The transition between the yeast

and filamentous growth forms of C. albicans has been intensively investigated. It was initially

hypothesized that C. auris was unable to form true hyphae, but rather only developed pseudo-

hyphae [32,44]. However, increasing evidence indicates that C. auris isolates can form true

hyphae under specific circumstances.

Environmental factors including serum, N-acetyglucosamine (GlcNAc), and high levels of

CO2 are potent inducers of filamentous growth in C. albicans [56]. It was recently determined

that these factors did not induce filamentous growth in C. auris [41]. Thermotolerance and

osmotolerance are distinguishing characteristics of C. auris. In 1 recent study, C. auris was

grown on yeast extract peptone dextrose (YPD) medium supplemented with 10% NaCl. This

condition induced the formation of elongated and pseudohyphal-like cells at both 37˚C and

42˚C [41]. Heat shock protein 90 (Hsp90) is an essential molecular chaperone that controls

temperature-dependent filamentation in C. albicans [61]. Another study recently reported that

treatment of C. auris cells with an Hsp90 inhibitor resulted in the formation of pseudohyphal-

like cells [62]. Similar inhibition of Hsp90 in C. albicans resulted in filamentous growth, sug-

gesting that certain regulatory mechanisms of filamentation are conserved, at least in part,

between C. albicans and C. auris. These studies also indicate that certain C. auris isolates have

the potential to undergo filamentation under specific environmental conditions.

It was recently found that a subset of C. auris cells gained the ability to undergo filamenta-

tion after passage through the mouse in a systemic infection model ([43] and Fig 5). Three

distinct cellular phenotypes were described in this study: typical yeast cells, filamentation-com-

petent yeast cells, and filamentous-form cells. The typical yeast cells were locked in the yeast

form and were unable to filament under in vitro culture conditions or upon filament-inducing

environmental stimuli (e.g., medium and temperature changes or treatment with filamenta-

tion inducers for C. albicans). After passage through the mouse, a small proportion of typical

yeast cells gained the ability to form filaments and were termed as “filamentation-competent

yeast cells.” After recovering these yeast cells from mouse tissues and growing them on YPD or

Lee’s medium at temperatures of 25˚C or lower, these C. auris cells underwent robust filamen-

tation and were termed as “filamentous-form cells.” Surprisingly, microscopy analysis indi-

cated that these filamentous-form C. auris cells appeared morphologically similar to true

hyphae formed by C. albicans [43]. Interestingly, of the conditions tested, the low temperature

condition (<25˚C) was most conducive for filamentous growth, while the human physiologi-

cal temperature (37˚C) repressed filamentous growth in C. auris. This phenomenon is in con-

trast to that observed in C. albicans where cells predominantly grow in the yeast form at low

temperatures and the filamentous form at human physiological temperatures [56]. These find-

ings suggest that filamentous morphologies of C. auris could exist in the environment and on

the host skin surface where the temperature is lower than inside the host.

Switching between the typical yeast form and the filamentation-competent yeast form of C.

auris was a rare event, but when it did occur, it was heritable [43]. Switching between the fila-

mentation-competent yeast cells and filamentous-form cells, on the other hand, was nonheri-

table and dependent on the environment [43]. These findings indicate that once C. auris cells

obtain the ability to filament, they can develop robust filamentous cells upon environmental

stimuli (e.g., growth at low temperatures). This heritable switch between the typical yeast form

cells and filamentation-competent yeast form cells is akin to the white-opaque phenotypic

switching system in C. albicans [63]. Similar to the filamentation-competent yeast form cells of

C. auris, both white and opaque cells of C. albicans can maintain their cell identities for many

generations. It remains to be investigated whether the mechanisms of this cellular memory in

C. auris are genetically or epigenetically regulated. Nonetheless, these 3 C. auris cell types
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appear to form a 3-way phenotypic switching system that consists of a heritable transition

between the typical yeast cells and the filamentation-competent yeast cells and a nonheritable

transition between the filamentation-competent yeast cells and the filamentous-form cells

(Fig 5B).

The yeast and filamentous cells of C. auris differ in a number of biological aspects including

global gene expression profiles, expression of virulence factors, and virulence in a mouse infec-

tion model [43]. Interestingly, a large set of metabolism-related genes was differentially

expressed between C. auris yeast and filamentous cells. Genes involved in sugar transportation,

glycolysis, and the Krebs cycle were up-regulated in filamentous cells, suggesting that general

metabolic processes are more active in filamentous cells relative to yeast cells of C. auris.
Based on yeast carbon base–BSA (YCB–BSA) assays that detect secreted aspartyl protease

(Sap) activity, C. auris typical yeast cells and filamentation-competent yeast cells displayed

higher levels of Sap production relative to filamentous-form cells when grown at 25˚C [43].

All 3 cell types exhibited similar levels of Sap secretion at 37˚C, likely due to the fact that

filamentous-form cells converted “en masse” to filamentation-competent yeast cells at this

Fig 5. Morphological transitions in C. auris. (A) Colony and cellular morphologies of C. auris typical yeast form and filamentous-form phenotypes.

Cells were grown on YPD medium. Images were adapted from [43]. (B) Known mechanisms for in vivo and in vitro phenotypic switching. Passage

through the mouse mediates the switch between the typical yeast form and the filamentous competent yeast forms, whereas temperature mediates the in

vitro switch between the filamentous competent yeast form and the filamentous forms. YPD, yeast extract peptone dextrose.

https://doi.org/10.1371/journal.ppat.1008921.g005
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temperature [43]. This notable difference in Sap secretion may influence the abilities of the

typical yeast and filamentous-form cells to adapt to diverse ecological niches. Given that fila-

mentous-form cells compared to typical yeast form cells of C. auris produce lower levels of

Saps, which are important virulence factors, the filamentous form may be better adapted to

colonizing the skin of the host as a commensal. Consistent with this idea, it has been suggested

that C. auris, unlike C. albicans, is a primary colonizer of the skin rather than the GI tract of

humans [10].

Why has C. auris evolved a filamentation-competent yeast form? This is an important

unanswered question that should be explored in future studies. One possible explanation is

that the 3-way phenotypic switching system in C. auris consisting of the typical yeast, filamen-

tation-competent yeast, and filamentous forms is much more complex and versatile than the

2-way switching systems observed in C. albicans, such as the yeast filament and the white-

opaque transitions. Compared to C. albicans, this added phenotypic plasticity could allow C.

auris to more efficiently adapt to the ever-changing environment.

Biofilm development. Biofilms are structured microbial communities that form on abi-

otic and biotic surfaces and are embedded in an extracellular matrix [64]. The biofilm mode

of growth is the preferred state for microorganisms in natural ecological niches. In a clinical

setting, a biofilm formed on human tissue (e.g., on a mucosal layer) or on an implanted med-

ical device (e.g., a central venous catheter) can serve as a source of infection that can spread

to other parts of the body [65]. It has been found that C. auris can develop biofilms on sur-

faces, although its biofilms are relatively weak compared to those formed by C. albicans [12].

C. auris biofilm cells, similar to C. albicans biofilm cells, however, have been shown to exhibit

high levels of resistance to antifungal agents compared to their free-floating (planktonic) cell

counterparts.

Biofilm formation abilities vary across C. auris isolates and clades [44]. Although both the

aggregated and non-aggregated C. auris cell types are able to develop biofilms, the latter have

been shown to form more robust biofilms [44]. Interestingly, time course RNA-sequencing

experiments identified genes encoding putative adhesins, efflux pumps, and virulence factors

to be up-regulated during C. auris biofilm development [66]. Although the roles of C. auris
biofilms are less understood than those of biofilms formed by other Candida species, C. auris
biofilms certainly contribute to the virulence, antifungal resistance, and survival properties of

C. auris in the environment and likely in the host. Therefore, the development of therapeutic

approaches to target C. auris biofilms both in patients and in the environment is an important

area for future research.

Antifungal resistance mechanisms

One important reason that C. auris is considered to be a “superbug” and is increasingly

becoming a threat to human health is its intrinsic resistance to 1 or more classes of antifungal

drugs available in the clinic [22,35]. Based on the conservative antifungal drug break points for

C. albicans and other Candida species, most isolates of C. auris are resistant to fluconazole. A

subset of C. auris isolates has high minimum inhibitory concentrations (MICs) than that of

amphotericin B and echinocandin compounds, and some C. auris strains are resistant to all

available classes of antifungal drugs [10,11]. A comparative study of European Committee on

Antimicrobial Susceptibility Testing (EUCAST) and Clinical and Laboratory Standards Insti-

tute (CLSI) methods revealed that C. auris isolates have a remarkably similar fluconazole resis-

tance but a wide range of MICs for the other antifungal drug classes [67]. It is noteworthy that

the closely related species to C. auris, C. haemulonii, and C. lusitaniae are also often resistant

to 1 or multiple antifungal drug classes [11,68]. This observation suggests that C. auris, C.
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haemulonii, and C. lusitaniae have similar genetic mechanisms for their antifungal resistance

properties; C. haemulonii and C. lusitaniae, however, are infrequently isolated as infectious

agents.

Ergosterol is the major sterol component of fungal membranes and is the target of the

azoles (e.g., fluconazole) and the polyenes (e.g., amphotericin B) [69,70]. The first-line antifun-

gal drug in the clinic, fluconazole, inhibits cellular ergosterol biosynthesis by targeting the

fungal cytochrome P450-dependent enzyme lanosterol demethylase that is essential for the

production of ergosterol. ERG11 encodes lanosterol demethylase in the Candida species. Inter-

estingly, 3 hot spot mutations (Y132F, K143R, and F126L or VF125AL) have been found in

Erg11 in fluconazole resistant C. auris strains of different genetic clades [10].

Although isolates of C. auris that are resistant to fluconazole and amphotericin B are com-

mon, echinocandin-resistant isolates (e.g., caspofungin) are relatively rare [71]. FKS1 encodes

the catalytic subunit of 1,3-beta-D-glucan synthase that is critical for cell wall synthesis and

maintenance in Candida species [72,73]. Isolates of C. auris with an S639F mutation in Fks1

were caspofungin resistant, while other isolates harboring a wild-type Fks1 were susceptible to

caspofungin at human therapeutic doses [74].

Virulence and animal models

Infections by C. auris can occur at multiple body sites, including the skin, urogenital tract, and

respiratory tract of humans. C. auris infections can disseminate to the bloodstream, and when

this occurs, they are associated with high mortality rates [7,16,23,35,39]. Recent reports have

demonstrated that C. auris, similar to C. albicans, expresses several known virulence factors,

including Saps and lipases to degrade and invade host tissues [41,43]. Comparative studies in

animal models indicate that C. auris is less virulent than C. albicans, both in the murine dis-

seminated infection model and in the invertebrate G. mellonella infection model [32,41]. How-

ever, C. auris is significantly more virulent than C. glabrata and C. haemulonii in the murine

infection model [75,76]. This decrease in virulence relative to C. albicans is likely due to the

fact that C. auris, along with C. glabrata and C. haemulonii, is unable to develop hyphae or

pseudohyphae in the mammalian host that play critical roles in tissue invasion during infec-

tions [43]. Another possible reason for the relatively low virulence of these 3 species compared

to C. albicans is that they are all haploid microorganisms, while natural C. albicans isolates are

diploid. Consistent with this idea, a fluconazole-induced haploid C. albicans strain was found

to be much less virulent than its diploid counterpart [77]. In 1 recent study, all cell types of C.

auris that were initially injected into a mouse (regardless of whether they changed into another

cell type) exhibited similar levels of virulence [43]. We propose that filamentous cells of C.

auris are unlikely to contribute to virulence in systemic infections but are more likely to play

roles in colonizing the skin and environmental surfaces. This idea is supported by a study that

found that C. auris filamentous cells produce fewer virulence factors (e.g., Saps) compared to

C. auris yeast-form cells [43].

Some isolates of C. auris can form aggregates under both in vitro and in vivo conditions.

Cell aggregation could benefit C. auris by allowing fungal cells to evade the host immune sys-

tem, persist in host tissues, and have increased levels of antifungal tolerance [75]. Unlike C.

albicans cells, neutrophils are poorly recruited to C. auris cells, are not effective at killing C.

auris cells, and do not form neutrophil extracellular traps (NETs) [78]. Evasion of the host

neutrophil attack seems to be an important C. auris survival strategy within the host. The

ability of C. auris cells to form aggregates seems likely to hinder the host innate immune

response by creating a protective physical barrier for C. auris cells from the environment.
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Given that C. auris is such an important and emerging pathogen in clinical settings, effec-

tive animal models are needed to investigate its pathogenesis and biology. Other than the

murine model and the G. mellonella model, several other animal models, including Drosophila
melanogaster and Caenorhabditis elegans invertebrate models, have been used to evaluate C.

auris pathogenesis and the effects of antifungal therapies on treating C. auris infections

[79,80]. A study on the use of Toll-deficient flies to model C. auris and C. albicans infections

found that C. auris infections had significantly higher mortality rates than those of C. albicans
[79]. Using a C. elegans model, another study found that sulfamethoxazole and itraconazole

synergistic treatment was effective against C. auris infections caused by specific multidrug-

resistant C. auris strains [80]. Overall, invertebrate animal infection models are useful in pro-

viding a fast and inexpensive means to study pathogenesis and antifungal resistance in C.

auris.

Genomics and genetics

C. auris is a haploid fungus. As of April 2020, the genomic sequences of over 700 C. auris iso-

lates are available on the National Center for Biotechnology Information (NCBI) genome

database (https://www.ncbi.nlm.nih.gov/genome/) [81]. The genome of C. auris B8441 was

sequenced by the CDC [10], and its sequence information and annotation is available on the

Candida Genome Database (CGD) database (https://www.candidagenome.org). C. auris has 7

chromosomes, and the genome sizes of isolates range from 12.1 Mb to 12.7 Mb [13]. Based on

genomic and RNA-sequencing information, it is estimated that C. auris has approximately

5,500 predicted genes [13,14].

Although sexual reproduction has not been observed in C. auris to date, the mating type

loci (MTLa and MTLα) and most mating and meiosis genes are found in the C. auris genome

[13]. These loci are generally well conserved and share high structural and sequence similari-

ties within the CTG clade species [13]. The MTL loci of C. auris, similar to MTL loci of other

CTG clade species, contain several “non-sexual” genes such as the phosphatidylinositol kinase

encoding gene PIK1, the oxysterol binding protein encoding gene OBP1, and the poly(A) poly-

merase encoding gene PAP1. All C. auris strains isolated to date have contained either the

MTLa or the MTLα locus. Isolates of clades I and IV have an “a” mating type (MTLa), whereas

isolates of clades II and III have an “α” mating type (MTLα) [13]. Given that both MTL are

present in C. auris, it seems likely that C. auris should be able to mate, but that we have simply

not yet identified a mating conducive niche for this fungus.

Comparative genomic analyses indicate that the C. auris genome contains conserved genes

within the CTG clade that are associated with virulence and antifungal resistance [13,14]. For

example, genes encoding the Saps, components of the ergosterol biosynthesis pathway, the

MFS transporter Mdr1, and the transcriptional regulators Upc2 and Tac1 (including Tac1A

and Tac1B) are all present in the C. auris genome. Intriguingly, a recent study found that

mutations in TAC1B are associated with increased fluconazole resistance in C. auris [82]. In

addition, there are only a small number of unique genes in C. auris that are absent in its closely

related CTG clade species. These C. auris-specific genes include genes encoding oligopeptide

and ATP-binding cassette (ABC) transporters, further contributing to its intrinsic antifungal-

resistant nature [13].

Origins

Four major clades of C. auris (I, II, III, and IV initially isolated from South Asia, East Asia,

South America, and South Africa, respectively) and a potential fifth clade isolated from Iran

have been described to date [10,34]. Whole-genome sequencing analysis revealed that the first

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008921 October 22, 2020 12 / 18

https://www.ncbi.nlm.nih.gov/genome/
https://www.candidagenome.org
https://doi.org/10.1371/journal.ppat.1008921


4 genetically distinct clades of C. auris emerged independently and nearly simultaneously at

different locations across 3 continents [10]. Although C. auris is closely related to other patho-

genic Candida species that can be found in the environment, C. auris has not been found to

exist in natural environmental settings. One study from the Netherlands reported isolating C.

auris from swimming pools [83], but in these cases, the fungus likely originated from pool visi-

tors. Two recently published perspective articles have comprehensively discussed hypothetical

ecological origins of C. auris [21,47]. It has been proposed that the emergence of C. auris may

have resulted from climate change, specifically global warming [21]. The authors propose that

C. auris was an environmental fungus before it evolved to be a human pathogen as the climate

increased in temperature. Since C. auris is highly tolerant of high ambient temperatures and

hypersaline conditions, the authors suggest that wetlands could be the natural ecological niche

of C. auris before it became associated with warm-blooded animals and humans. Moreover,

the increased use of antifungal agents in medicine and agriculture likely further contributed to

the emergence of C. auris as well as other antifungal-resistant and antifungal-tolerant fungal

species [21].

Over the past several decades, more and more fungal pathogens have been emerging to

threaten humans, animals, and plants. Human activities, including those that result in global

warming, may be supporting environments that allow for the evolution of fungal characteris-

tics that are conducive to host colonization and infection. It seems likely that novel fungal

pathogens will similarly emerge in the future due to changes in global temperatures, atmo-

spheric CO2 levels, humidity, and other alterations to natural environmental niches [84].

Conclusion and open questions

C. auris is a new public global health threat. Despite the close phylogenetic relationship of C.

auris to other pathogenic Candida species, C. auris has many unique characteristics in its biol-

ogy, genetics, epidemiology, antifungal resistance, virulence, host adaptation, and

transmission.

While C. auris has garnered significant scientific attention recently, there are many unan-

swered questions related to its emergence and biology. What are the original environmental

reservoirs for C. auris? How did isolates with different genetic backgrounds emerge nearly

simultaneously worldwide? How did multidrug resistance evolve in C. auris? What enables C.

auris to persist in clinical settings for long periods of time? Is C. auris capable of sexual or para-

sexual reproduction and, if so, did this contribute to its emergence as a pathogen? Significant

research efforts are needed to begin to answer these questions. We need to explore the basic

biology and genetic bases of antifungal resistance and pathogenicity in C. auris. As we gain

mechanistic knowledge on C. auris, we should be able to develop rapid and accurate detection

methods to distinguish C. auris from other Candida species, which will help with diagnosing

C. auris infections. We will also be able to develop new disinfection protocols for the effective

removal of C. auris from surfaces, which will prevent future outbreaks. Finally, we need to

develop novel, safe, and effective antifungals and treatment strategies with diverse drug targets

to combat infections cause by C. auris as well as other existing and soon-to-be emerging fungal

pathogens.
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