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In the past two years, the world has faced the pandemic caused by the severe

acute respiratory syndrome 2 coronavirus (SARS-CoV-2), which by August of

2022 has infected around 619 million people and caused the death of 6.55

million individuals globally. Although SARS-CoV-2mainly affects the respiratory

tract level, there are several reports, indicating that other organs such as the

heart, kidney, pancreas, and brain can also be damaged. A characteristic

observed in blood serum samples of patients suffering COVID-19 disease in

moderate and severe stages, is a significant increase in proinflammatory

cytokines such as interferon-a (IFN-a), interleukin-1b (IL-1b), interleukin-2
(IL-2), interleukin-6 (IL-6) and interleukin-18 (IL-18), as well as the presence

of autoantibodies against interferon-a (IFN-a), interferon-l (IFN-l), C-C motif

chemokine ligand 26 (CCL26), CXCmotif chemokine ligand 12 (CXCL12), family

with sequence similarity 19 (chemokine (C-C motif)-like) member A4

(FAM19A4), and C-C motif chemokine ligand 1 (CCL1). Interestingly, it has

been described that the chronic cytokinemia is related to alterations of blood-

brain barrier (BBB) permeability and induction of neurotoxicity. Furthermore,

the generation of autoantibodies affects processes such as neurogenesis,

neuronal repair, chemotaxis and the optimal microglia function. These

observations support the notion that COVID-19 patients who survived the

disease present neurological sequelae and neuropsychiatric disorders. The

goal of this review is to explore the relationship between inflammatory and

humoral immune markers and the major neurological damage manifested in

post-COVID-19 patients.

KEYWORDS
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1039427/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1039427/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1039427/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1039427/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1039427&domain=pdf&date_stamp=2022-12-16
mailto:emartinez@inmegen.gob.mx
https://doi.org/10.3389/fimmu.2022.1039427
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1039427
https://www.frontiersin.org/journals/immunology


Elizalde-Dı́az et al. 10.3389/fimmu.2022.1039427
Introduction

The pandemic caused by the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) has increased

morbidity and mortality rates worldwide (1, 2). According to

various clinical reports and laboratory studies, it is known that

the virus can affect different organs such as respiratory tract,

lungs, heart, liver, pancreas, kidneys, muscles, and nervous

system at different levels (3–5). During the pandemic course,

several post COVID-19 effects have been observed that hinder

total patient recovery. The World Health Organization (WHO)

has denominated these symptoms as long COVID or COVID-19

condition, defining it as a condition that “occurs in individuals

with a history of probable or confirmed SARS-CoV-2 infection,

usually 3 months from the onset of COVID-19 with symptoms

and that last for at least 2 months and cannot be explained by an

alternative diagnosis. Symptoms may be new onset following

initial recovery from an acute COVID-19 episode or persist from

the initial illness. Symptoms may also fluctuate or relapse over

time” (6–8).

Several follow-up studies in patients suffering long COVID

have documented cardiovascular alterations, fatigue, dyspnea, chest

pain, appetite loss and hair loss. Interestingly nervous system seems

particularly affected after COVID-19 disease (9, 10). Patients have

reported headaches and dizziness, as well as psychiatric disorders

and motor discoordination (11–13). In a period of 7 months after

viral infection, some patients have presented conditions that are

mainly related to neuropsychiatric and neurological deficits, with a

prevalence of 19.7% to 36% (4, 14, 15). The characteristic symptoms

of these alterations are anosmia, hypogeusia, partial or total

hyposmia (16, 17), myalgia, cerebral inflammation,

cerebrovascular strokes (18), acute encephalopathy, seizures,

Guillain-Barré syndrome (19), neurocognitive disorders, sleep

disorders, delirium, memory deficit, concentration deficit,

depression, psychosis, hallucinations, paranoia (20), chronic

fatigue and partial or total apraxia (21).

Similar to the neurological alterations of SARS-CoV-2 post-

infection, there are data from patients who were infected with

SARS-CoV-1 and MERS. The clinical follow-up carried out on

these patients recorded symptoms of depression, disorder of post-

traumatic stress (PTSD), anxiety, sleep disorders, weakness,

chronic fatigue and general pain, in a follow-up period covering

6 to 20 months post-infection (22, 23), symptoms set similar to

the neurological alterations reported in SARS-CoV-2 post-

infection. A meta-analysis of 120,970 patients infected with

SARS-CoV-2 revelated that women are more susceptible to

present moderate neurological and cardiovascular long-COVID

symptoms. It also was reported that age is directly related to a

higher incidence of psychiatric, respiratory, digestive and skin

conditions. In addition, in a subgroup of 106,284 participants it

was observed an incidence of 19.7% of neurological disorders,

where the main manifestations included, concentration difficulty
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(14.6%), headache, disorders of the taste and smell, cognitive

impairment, memory deficits, dizziness, and cramps.

Furthermore, psychiatric conditions affected 20.3% of the

participants, who presented PTSD, depression, sleep disorder

and anxiety (14).

The analysis of cerebrospinal fluid (CSF) and peripheral blood

samples of 127 patients, who were positive for SARS-CoV-2 and

showed neurological damage symptoms after 7 days of infection,

revelated that they suffered systemic inflammation and impaired

blood-brain barrier (BBB). The neurological manifestations

included encephalopathy, altered consciousness, delayed walking

reaction, epilepsy-like electroencephalogram (EEG) changes,

cerebral ischemia, myelitis, cerebellar ataxia, sensorimotor

symptoms of unknown cause, cognitive impairment, peripheral

neuropathy, anosmia, headache and nausea (24). Altogether these

studies indicate a relationship between SARS-CoV-2 infection and

neurological conditions observed in long COVID. Themain goal of

this review is to elucidate the role of the antiviral dysregulation

response by the immune system and its relationship with the

sequelae of damage to the central nervous system (CNS) in

patients with long COVID.
Relationship between SARS-CoV-2
and nervous system

It has been documented that coronaviruses have the ability

to affect the CNS (25). In this context, several investigations have

discovered that b-coronaviruses such as MERS-CoV and SARS-

CoV-1 can infect the CNS (25–29). Furthermore, traces of

SARS-CoV-2 have been detected in the olfactory mucosa,

trans olfactory mucosa, neuronal projections and neurons

during and after the infection period (30–34). In some

COVID-19 cases the first symptoms presented by patients is

hyposmia or anosmia. This could be due to the olfactory

epithelium damage caused by the coronavirus, which in turn

affects the olfactory neural network that is connected with the

primary olfactory cortex (35–37). To date there is no precise

understanding about the dynamics of the initial antiviral

response against SARS-CoV-2 that occur at the level of the

olfactory epithelium. However, there are data from nasal

samples that showed an increase of proinflammatory cytokines

within two days after the first symptoms, compared with

samples of same tissue that were taken at longer times (5 or

more days after presenting the first symptoms), when the levels

of proinflammatory cytokines decreased (17). This could

indicate that the immune response produced in the olfactory

epithelium associated with nerve cells occurs in a transient

manner. However, this response is sufficient to generate some

neuronal damage either by a direct action of the virus or by an

indirect mechanism that involves the dysregulation of the

immune response.
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The BBB is the main physiological structural interconnection

between the external environment and the brain whose main

function is to protect central neurons. It also participates in the

selective transit of cells, nutrients and brain cell metabolism toxic

byproducts (38). When a systemic inflammation process occurs,

the BBB induces a series of brain responses whose main objective

is to promote brain survival, which is known as disease behavior

(39). This response induces a set of physiological and behavioral

changes, coordinated and executed by the brain, which protect the

individual from the various phases occurring during an infection.

For example, the induction of lethargy allows to fight infection

through the induction of fever and anorexia (40, 41).

In patients who succumbed to COVID-19 and who had an

exacerbated inflammatory response, presented BBB involvement

manifested through multifocal vascular damage caused by

autoantibodies. This process that induced serum proteins

infiltration into the brain parenchyma, generalized endothelial

cell activation, classical complement pathway activation, platelet

aggregates and microthrombi adhered to endothelial cells

throughout the vascular lumen. In addition, the infiltration of

macrophages, T cells and B cells into brain structures has been

reported, observing a greater presence of CD8+ T cells in the

perivascular region compared to CD4+ cells. There are also

reports of astrogliosis in perivascular regions and microglial

nodule formation in the hindbrain, which is associated with focal

neuronal loss and neuronophagia (42).

The SARS-CoV-2 induces a nuclear structure reorganization

and the dispersion of the genomic compartments of the cell, which

leads to the low expression of the genes ADCY3, CNGA2, GN13,

GFY, OMP, LHX2 and ATF5, which are key in the olfactory

receptors signaling and this downregulation lead to anosmia (17).

It has been proposed that once the virus enters the olfactory

receptor neurons, the infection is propagated through the synaptic

connections (43). In the case of the olfactory receptor neurons-

mitral cells axis, there is an activation of the glial, which in turn

promote the release proinflammatory cytokines such as IFN-a,
TNF-a, IL-1a, IL-1b, IL-2, IL-6, IL-8, IL-17A, IL-18, CXCL10,
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CXCL12, CCL1, CCL2, CCL3, CCL4, CCL5, CCL7, CCL11, GM-

CSF and B cell-activating factor belonging to the TNF family

(BAFF). These cytokines that have been detected at elevated levels

in samples of CSF, brain tissue, and serum of peripheral blood

from patients with severe COVID-19 (44–49). It should be noted

that the upregulated production of these cytokines can cause

serious damage to the CNS, since it promotes neuronal stress and

apoptosis, as well as the interruption of the BBB (43). In a mild

respiratory COVID mouse model, it was observed that these

events eventually increase neuroinflammation cascades causing

synaptic loss, demyelination, excitotoxicity and transcriptional

downregulation of Trem2, Sall3 and Adrb1 genes in microglia,

the latter gene being an indicator of white matter degeneration

(48). Other cerebral regions can potentially be affected by a similar

mechanism. For instance, midbrain dopamine neurons derived

from human pluripotent stem cells are selectively permissive to

SARS-CoV-2 infection. This triggers an inflammatory response at

neuronal level and the expression of the insulin like growth factor

binding protein 7 (IGFBP7) and LAMININ B1 genes associated

with cellular senescence (32). The expression of these molecules

leads to the overactivation of glia and trigger mechanisms of

neuronal damage (50). Overall, the neuronal damage associated

with the upregulation of proinflammatory cytokines could be the

cause of the appearance of neurological symptoms related with

long COVID (Table 1).

The effects that SARS-CoV-2 infection induces in brain

structures was analyzed on 401 patients who suffered from

COVID-19. Using the UK Biobank database, there was a

selection of patients with brain imaging studies prior to

COVID infection, and all patients were subject to brain

imaging 38 months later. All the patients had at least one or

more of the following affectations: significant reduction in gray

matter thickness and tissue contrast in the orbitofrontal cortex,

changes in diffusion measures, which are indicators of tissue

damage, increase in CSF volume and overall size brain reduction

(37). These changes were consistent and related to previously

detected cognitive impairment in the study population. SARS-
TABLE 1 Upregulated cytokines associated at neurological damage observed in patients with long COVID.

Neurological affectation Upregulated cytokines References

Neurocognitive disorders IFN-a, IL-1, IL-6, IL-17A, IL-18, CCL7 (51–59)

Sleep disorders IL-1, IL-8, IL-18 (55, 56, 58, 60)

Memory deficit IL-1, IL-18, CCL3, CCL7, BAFF (54, 57, 60–63)

Concentration deficit IFN-a, CCL7 (51, 57, 64)

Depression IFN-a, TNF-a, IL-1, IL-2, IL-6, IL-8, IL-17A, IL-18, CCL1, CCL2, CCL5, CCL7, CCL11 (51, 52, 54–57, 65–71)

Psychosis IFN-a, IL-6, BAFF (51, 55, 63, 72)

Hallucinations IFN-a (51)

Systemic inflammation IFN-a, TNF-a, IL-1, IL-2, IL-6, IL-8, IL-12, IL-17A, IL-18, CXCL10, CCL3, CCL4, CCL5, CCL7, GM-CSF (51, 54–56, 60, 61, 73–78)

Peripherial neuropathy TNF-a, IL-1, IL-2, IL-6, IL-8, IL-12, IL-17A, IL-18, CXCL10, CCL3, CCL4, CCL5, CCL7, GM-CSF (54–56, 60, 61, 73–79)

Stroke IFN-a, TNF-a, IL-1, IL-6, IL-8, IL-17A, IL-18, CXCL-10, CXCL12, CCL2, CCL3, CCL5, CCL11 (55, 56, 60, 75, 78, 80–82)

Anxiety TNF-a, IL-1, CXCL12 (56, 67, 83)
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CoV-2 infection also changes the vasculature of the brain, since

one of the damages induced by the virus is ischemic and

hemorrhagic cerebrovascular strokes (84). A postmortem

study in patients who died from severe COVID-19 revelated

the presence of viral inclusion structures, accumulation of

inflammatory cells in the vascular endothelium (lymphocytic

endotheliitis), and endothelial cell apoptosis (50). All these

sequelae of SARS-CoV-2 infection in the CNS has been

monitored in the serum and CSF of patients with long COVID

who present neurological damage symptoms (encephalopathy,

seizures, paraplegia, paresis, Guillain-Barré syndrome, ataxia

and dysesthesia). These patients show a slight increase in

white blood cells and an increase in the concentrations of total

proteins and albumin, which indicates that the virus triggers a

systemic dysfunction that can be detected at blood and CSF

level (24).
Deciphering the process of
neurological damage caused by the
exacerbated innate immune
response to SARS-CoV-2

Once a virus reaches the nerves and brain tissue, an

inflammatory mechanism is activated which aims to limit the

infection process, eliminate the virus, or repair cell damage.

Depending on the activated immunological pathway and the

magnitude with which it is activated, the response can have

positive or negative consequences on the physiology and

behavior of the individual (85). The complications of

exacerbated neuroinflammation can include headache, ischemia,

interstitial edema, cerebral vasodilatation, blood vessel injury,

vomiting, visual loss, blood stasis, increased cerebral pressure,

cognitive problems, and loss of consciousness (86–89).

Neuroinflammation characterized by an early and brief

inflammatory response is considered neuroprotective, and is

initiated by the activation of glial and endothelial cells (90, 91).

On the contrary, a prolonged neuroinflammatory activation

induces damage to brain structures and tissues, which has been

associated with several neurodegenerative diseases, such as

Alzheimer’s disease (AD), Parkinson’s disease (PD), and

multiple sclerosis (92, 93).

The role of the microglia during resting conditions is to

constantly examine the brain microenvironment to maintain

homeostasis through the elimination of cellular waste (94).

When there is a damage to neuronal structures, a process

known as microglia activation occurs. This process is

characterized by the release of cytokines, chemokines, and

inflammatory molecules (95). However, when the immune

response is dysregulated, the exacerbated release of

proinflammatory cytokines occurs, which has been associated

with high mortality in patients with COVID-19 (96). This type
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of patients show microglia hyperactivation through multisystem

inflammatory syndrome (97, 98) and systemic inflammatory

response syndrome (99).

Dysregulation of the immune response due to the SARS-

CoV-2 infection has the ability to downregulate angiotensin

converting enzyme 2 (ACE-2) expression, which influences the

activation and balance of the inflammatory pathway (100). The

decreased expression of ACE-2 increases the concentration of

Ang-II favoring the ACE/Ang-II/AT1R pathway. This leads to

the activation of the NF-kB transcription factor and the

consequent activation of the production and release of

proinflammatory cytokines (101). Altered cytokine

concentrations have been observed in samples of both patients

with acute SARS-CoV-2 and in patients with manifestations

associated with long COVID (43, 102, 103). The increase in Ang-

II concentration also favors the Ang-II/aminopeptidase-A/Ang-

III/aminopeptidase-A/Ang-IV/AT4R pathway (104, 105). The

increase in Ang-III concentration induces hormone

overproduction such as vasopressin in the hypothalamus and

aldosterone in the adrenal gland (105). These alterations result

in increased peripheral vascular resistance and blood pressure.

Moreover, Ang-III dysregulates Na+/K+ equilibrium which

results in vascular damage, stroke and heart attack (106, 107).

Both Ang-III and Ang-IV can bind to AT1R, thus induce the

activation of this receptor and the activation consequently of the

NF-kB transcription factor (105, 108, 109). The increase of Ang-

IV dysregulates the vasodilatation process, increases the

excretion of sodium, and the release of plasminogen activator

inhibitor-1, favoring the development of thrombotic events both

in lungs and in the brain (108, 110–113). According to

transcriptome databases, ACE2 is expressed in excitatory and

inhibitory neurons, astrocytes, oligodendrocytes, and

endothelial cells (114). We believe that ACE-2 downregulation

induced by SARS-CoV-2 infection, is one of the first pathways

responsible for immunological response damage to the CNS.

An additional mechanism associated with pro-inflammatory

cytokines induction occurs when the virus infects the cell, and

the innate immune system detects viral RNA genome, either as

ssRNA or one of dsRNA’s intermediaries through the Toll-Like

Receptors including TLR3, TLR7, and TLR8 (115, 116). These

receptors are responsible for activation of transcription factors

such as IRF3, IRF7, NF-kB, ISRE3, and API. This transcription

factors are related to the expression of key proinflammatory

cytokines in the antiviral response such as TNF-a, IFN-a, IFN-b
and IFN-g (115, 117). IFN-a and IFN-b activates genes involved

in apoptosis processes, in the modulation of immune response,

in cellular attraction and adhesion, and genes involved in

antiviral and pathogenic detection (118). The balance that

exists between IFN-a and IFN-b concentrations is key in the

regulation of the inflammatory response. If there is any

imbalance in their concentrations, the IFN-g production is

affected and therefore the anti-inflammatory process does not

occur. In addition a chronic inflammation is promoted when the
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humoral response is deficient (119). Interestingly, in samples of

respiratory epithelial cells and plasmacytoid dendritic cells from

patients with severe COVID-19, there is a decrease of type-I

IFNs associated with self-recessive deficiencies in genes that code

for the proteins involved in interferon production (e.g. TLR3,

UNC93B, TRIF, TBK1, TBK1, IRF3, IRF7, IFNAR1/2, MYD88,

GATA2 and IRAK4) (120–126). In CSF samples of patients with

acute COVID-19 and sings of neurological damage, it was found

a reduced interferon response, expansion of clonal T cells and a

depletion of CD4+ T cells (127). Thus, it is possible that the

interferon production during and after infection is a key point in

the process of regulating systemic and neuronal inflammation.

The inflammatory response in the CNS system is mediated

by resident microglia and astrocytes (128), which detects the

presence of an exogenous or pathogenic agent such as SARS-

CoV-2 (129). Besides its direct participation in the elimination of

an infection, the microglia establish the balance between the

innate immune response and the adaptive immune response

(130, 131). During acute COVID-19, the exacerbated release of

proinflammatory cytokines promotes the production of reactive

oxygen species (ROS), which causes stress and cell damage at the

systemic level, affecting brain tissue (129). In some COVID-19

patients these cellular events manifest in symptoms such as

ischemia, inflammation of brain tissue, obstruction of blood

flow, headaches, loss of consciousness, cerebral edema, and

neuronal death (131–133).

Previous studies have reported that during influenza virus

infection there is an increase in the levels of proinflammatory

cytokines, such as IL-1b, IL-6, CXCL8, CXCL9, CXCL10, CCL2,
and TNF-a, in the CSF of patients who present neurological

alterations such as acute encephalitis and encephalopathy (134,

135). It is also known that patients infected with human

orthopneumovirus and presenting neurological symptoms such

as encephalitis and encephalopathies, have elevated levels of the

proinflammatory cytokines IL-6, IL-8, CCL2, and CCL4 in CSF

samples (136, 137). West Nile virus is also known to

cause a neuroinvasive disease manifesting meningitis,

meningoencephalitis, encephalitis, or acute flaccid paralysis,

commonly associated with diarrhea/vomiting, weakness,

impaired vision, confusion, or drowsiness, and shows elevated

levels of proinflammatory cytokines IL4, IL6, and IL10 in serum

samples (138). Finally, Zika virus can infect the CNS and induce

microcephaly in fetuses and rare but serious neurological diseases

in adults, which are associated with excessive production of IFN-

a, IFN-b, IL-6, and TNF-a (139).

Interestingly, these neuroinflammatory pathological

processes observed in long COVID patients, resemble those

that occur in early phase of Parkinson’s disease (PD and AD

(92). For example, high levels of TNF-a and low levels of TNF-b
have been detected in CSF samples from patients with mild

cognitive impairment who progressed to AD, and the cytokines

IL-1b, IL-6, and TNF-a, tend to increase slowly, while the

cytokines IL-18, MCP-1, and IP-10 peak at a certain stage of
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the disease (140, 141). Activation of microglial cells has been

detected in the substantia nigra of patients with PD, due to the

fact that aggregated a-synuclein is released from the damaged

dopaminergic neurons (142). The accumulation of a-synuclein
leads microglia to a reactive proinflammatory phenotype in

which TNF-a, nitric oxide, and IL-1b are produced,

generating a neuroinflammatory state as recently shown in an

in vitro model of PD (143).
Role of the dysregulated antibodies
response against SARS-CoV-2
infection in neurological disorders

Part of neurological sequelae previously mentioned suffered

by SARS-CoV-2 patients, were also reported in individuals who

survived SARS-CoV-1 infection in 2004 who presented

cerebrovascular disorders such as ischemic stroke (144). These

affectations could be caused by abnormalities in coagulation

and hyperinflammation promoted by the presence of

antiphospholipid autoantibodies (eg. antiphosphatidylserine or

antiprothrombin) produced by plasma cells (88, 145, 146).

Autoantibodies are a type of antibodies that recognize epitopes

present in organs or tissues of the same individual and are related

to the development of autoimmune diseases including allergies

and oncopathologies (147, 148). Much of the generation of these

autoantibodies is caused by genetic mutations, infections or

environmental factors (149). The autoantibody generation can

result from an altered production of cytokines, stimulation of toll-

like receptors, or pattern recognition receptors (150).

Furthermore, they can also originate from an inadequate and

dysregulated release of autoantigens by cells and tissues, and/or

molecular mimicry (150, 151). In the case of COVID-19 infection,

various studies indicate that the spike protein of SARS-CoV-2 is

the causal agent of inducing the autoantibodies generation, which

might be a common characteristic in coronavirus infections (147,

148, 150, 152). It has been reported that the antibodies produced

by plasma cells against spike protein or receptor-binding domain

of the SARS-CoV-2 can cross-bind with own antigens (153). In a

follow-up study of 610 patients after 6 to 12months post-infection

with SARS-CoV-2, there were low concentrations of IgM and

IgG3 that correlated with a predisposition to develop long

COVID. Moreover, 71% of these patients presented severe

COVID-19 and bronchial asthma at the same time (152).

Regarding these immunoglobulins, it is known that both are

induced by the controlled production of interferons and

antagonized by IL-14 (154, 155). In addition, IgMs have a

relevant role in the humoral response since it is the first

immunoglobulin that participates in pathogen elimination

(156). IgMs functions as a powerful complement activator,

participate in the activation and regulation of the inflammatory

response, opsonization, and destruction of pathogens present in
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the circulatory system (155, 157). In addition, IgMs are associated

with the protective mechanisms of the vasculature and mucous

membranes (157). IgG3s, activate the complement system and

have a great affinity with Fc receptors (158). The deficiency of

IgG3s is related with the development of autoimmune diseases

(159). This could indicate that the innate immune response

dysregulation directly affects the humoral response activation

process, which leads to a deficient, non-specific and delayed

production of antibodies against SARS-CoV-2.

In a recent multicenter study it was proposed that a deficient

and prolonged immune response in hospitalized severe COVID-

19 patients promotes the adaptive immune response that attacks

non-structural viral proteins and causes the development of IgG

autoantibodies (160). Similarly, a proteomic profiling analysis

revealed that the generation of certain autoantibodies (e.g.

MUC1 or TNFRSF6B) is associated with the severity of the

disease (147). Consistent with this notion, several investigations

have also found that patients who had COVID-19 exhibit

marked increases in autoantibody reactivity compared with

uninfected individuals (160, 161). These individuals show a

high prevalence of autoantibodies against immunomodulatory

proteins (including cytokines, chemokines, complement

components, and cell surface proteins) (162). The main

consequence of these autoantibodies is the disruption of the

immune function and the impairment of the virologic control by
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inhibiting immunoreceptor signaling and altering the

composition of peripheral immune cells (163, 164).

There are cases where the presence of autoantibodies can be

detected prior to any viral infection, suggesting a genetic

predisposition to the generation of these autoantibodies (165).

This could explain why some COVID-19 patients are more

susceptible to produce autoantibodies that promote long

COVID (166, 167). Recent studies have shown that some of

these autoantibodies have an affinity for blood vessel and

nervous system proteins, which could explain the neurological

effects of long COVID by two mechanisms (168). First,

autoantibodies could potentiate the cellular stress induced by

proinflammatory cytokines. Second, autoantibodies could cause

specific and long-term damage in patients suffering from post-

COVID neurological sequelae (43, 168). In fact, COVID-19

patients with neurological sequelae produce autoantibodies

that inhibit the function of key proteins involved in

neuroprotection processes, neurite outgrowth, axogenesis,

neuronal plasticity, neurotransmission, neuronal survival, and

axonal regeneration (Supplementary Table 1) (167). The

generation of these autoantibodies may aggravate the

neuronal damage.

The dysregulation of the immune response and the deficient

elimination of cells infected by SARS-CoV-2 promote the release

of autoantigens towards the extracellular space and the
FIGURE 1

Proposed mechanism for neuro-long COVID. 1: SARS-CoV-2 infects olfactory epithelial and lungs. 2: Type-I IFNs production dysregulated
during primary immune response process against SARS-CoV-2 infection. 3: Exacerbated release of proinflammatory cytokines. 4: The
exacerbated and dysregulated inflammatory response causes the proinflammatory molecules release that damage the BBB, facilitate the
infiltration of immune cells into brain tissue, activate microglia, and damaging brain tissue cells, causing the autoantigens release. 5: Innate
immune response dysregulation affects the humoral response activation process and induce a nonspecific and delayed production of antibodies
against SARS-CoV-2 and the generation of autoantibodies against key proteins involved in neuronal regeneration and repair processes. 6:
Induction of neuronal death in specific areas.
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consequent generation of autoantibodies (169, 170). The analysis

of the “autoantigenicoma” in patients who suffered from

COVID-19 through the detection of autoantigens bound to

determatan sulfate (autoantigen-DS complex) seems to be

helpful to predict the appearance of autoimmune diseases and

neurological damage (171, 172). Using this strategy, 751

autoantigen candidates were found, of which 657 are directly

altered by infection with SARS-CoV-2. Remarkably, 400 of those

autoantigens are related to autoimmune diseases and cancer

(162). Regarding the nervous system, 150 autoantigens of

proteins are related to axon guidance, neuron projection,

myelin sheath, axon growth cone, neuronal cell body,

cerebellar Purkinje cell layer, peripheral nervous system axon

regeneration, radial glial scaffolds and proteins related to the

olfactory bulb. There were also 193 autoantigens of proteins

related to neurological diseases such as neuronal infection with

Japanese encephalitis virus, neuroblastoma, glioblastoma,

neurodegeneration in Down syndrome, AD, schizophrenia,

cerebral ischemia induced neurodegenerative diseases, PD, and

neurodegeneration (Supplementary Table 2) (172). The

mechanism by which coronaviruses could resemble conditions

of early events of neurodegeneration should be explored

considering the participation of the immune system and the

uncontrolled generation of autoantibodies that deteriorate

neuronal circuits.
Summary and proposal

The effects of long COVID on the CNS are increasingly

evident. For this reason, in the present work we analyzed the

role of the immune response against the coronavirus and its

impact on neuronal structures. The SARS-CoV-2 infects olfactory

epithelial cells through ACE-2 (173). Through genetic

rearrangements, the virus downregulates the expression of

proteins such as olfactory receptors and ACE-2 (17, 100). The

latter is implicated in the production of proinflammatory

cytokines (43). When the immune system detects the entry of

the virus, it activates the primary response, which is characterized

by the release of proinflammatory cytokines and the activation of

immune cells. These processes are regulated by type-I INFs and

together with IFN-g (115, 117) induce the generation of antibodies
(130, 131). However, due to the downregulation of ACE-2 and

mutations in type I INFs, the inflammatory response is

dysregulated, provoking the exacerbated release of

proinflammatory cytokines (117). This response damages

cellular structures and promotes the release of autoantigens

(168, 169). At the same time, the dysregulation of the innate

immune response affects the activation process of the humoral

response (119, 169). This may lead to a nonspecific and delayed

production of antibodies against SARS-CoV-2 and the generation

of autoantibodies that recognize key proteins involved in neuronal
Frontiers in Immunology 07
regeneration and repair processes, thereby increasing

neurodegeneration (167). We think this generates a cyclical

process of recognition and destruction of neuronal structures

(Figure 1). Depending on the region that is affected, this promotes

the appearance of neurological symptoms observed in patients

with long COVID.
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150. Dıéz P, Pérez-Andrés M, Bøgsted M, Azkargorta M, Garcıá-Valiente R,
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