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In brief

CK affects energy-metabolism pathways and 
protects against neuronal oxidative stress 
through the PI3K/AKT signaling pathway.

Protective effects of ginsenoside CK against 
oxidative stress-induced neuronal damage, 
assessed with 1H-NMR-based metabolomics
Graphical abstract

Highlights

•	 A preliminary exploration of the endogenous metabolites 
involved in the effects of CK in damaged HT22 cells was 
conducted with 1H-NMR.

•	 CK affects taurine, glycine, glutamate, and glutathione 
metabolism, according to metabolomic analysis.

•	 CK regulates ATP content in oxidatively damaged HT22 cells by 
upregulating the expression of components of the PI3K/AKT 
signaling pathway.
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ABSTRACT

Oxidative stress is an important pathogenic mechanism in degenerative diseases such as Alzheimer’s disease. 
Although ginsenoside compound K (CK) is protective against neuronal oxidative damage, the underlying mechanism 
remains to be understood. In this study, the protective effects of ginsenoside CK against oxidative stress damage 
induced by hydrogen peroxide in HT22 cells were investigated with 1H nuclear magnetic resonance (1H-NMR)-based 
metabolomics. The optimal CK concentration for decreasing oxidative stress damage in nerves was determined with 
MTT assays. CK (8 μM) significantly increased the HT22 cell survival rate after the model was established. Cell lysates 
were subjected to 1H-NMR metabolomics, western blotting, and ATP assays for verification. Metabolic perturbation 
occurred in HT22 cells in the model group but not the control group. Twenty biomarkers were identified and used 
to analyze metabolic pathways. CK reversed metabolic changes in HT22 cells by altering taurine, glutamate, glycine, 
and glutathione metabolism. Subsequently, CK increased ATP content and the expression of components of the 
PI3K/AKT signaling pathway in HT22 cells. These findings demonstrated that CK prevents oxidative stress damage 
and protects nerves by regulating energy-metabolism pathways, such as those of taurine, glutamate, and other 
amino acids, thus providing a rationale for the use of CK in Alzheimer’s disease treatment.
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Alzheimer’s disease (AD) is a life-threatening neurode-
generative disorder. The primary clinical manifestations 
of AD are cognitive impairment, intellectual decline, 
and personality changes [1]. With the aging of human 
society, the number of patients with AD continues to 
increase. AD is caused by genetic, environmental, and 
lifestyle factors that affect neuronal cell degradation 
over time and severely affect quality of life in older 
people. Intensive research on the pathogenesis of AD 
is ongoing [2].

A major cause of AD is oxidative stress, which leads to 
neuronal injury and death. Oxidative stress is caused by 
an imbalance in the production and elimination of oxy-
gen free radicals, thus resulting in the accumulation of 
oxygen active substances in the body and a subsequent 
stress response [3]. High levels of reactive oxygen spe-
cies (ROS) can cause oxidation of DNA, proteins, lipids, 

and other biological macromolecules, thus affecting the 
function and structure of biological molecules. ROS can 
also alter signal transduction and result in abnormal cell 
function and apoptosis. Therefore, inhibiting oxidative 
stress may be a feasible approach in the treatment of 
AD [4].

The history of ginseng (Panax ginseng C. A. Mey.) is 
described in "Shen Nong’s Materia Medica." Ginseng 
exerts effects in traditional Chinese medicine such as 
increasing vitality, supporting the spleen and lungs, 
delaying aging, and rejuvenating the nerves; its indi-
vidual components and metabolic components also 
show biological activity [5]. Ginsenoside compound K 
[20-O-β-D-glucopyranosyl-20(S)-protopanaxadiaol (CK)], 
one of the primary active metabolites of protopanaxadi-
ol-type ginsenosides, is produced by the intestinal flora 
from ginsengdiol saponins; moreover, CK has biological 
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properties, such as antiaging, neuroprotective, antioxi-
dative, and anti-inflammatory effects [6]. In our previ-
ous study [7], we confirmed that CK has neuroprotective 
properties; however, no analyses of the antioxidative 
and neuroprotective effects of CK have used 1H nuclear 
magnetic resonance (1H-NMR)-based metabolomics.

Recently, metabolomic techniques, an important 
part of systems biology approaches, have been widely 
used to discover novel biomarkers [8, 9]. 1H-NMR-based 
metabolomics has been applied to examine overall met-
abolic changes in organisms, thus enabling evaluation 
of the efficacy of traditional Chinese medicine formula-
tions, including their pharmacological and toxicological 
mechanisms [10]. Cell metabolomics research has rapidly 
and intuitively described the metabolism of specific cell 
types with little interference, thus revealing the overall 
performance of physiological functions at the cellular 
level [11].

Neuronal damage caused by oxidative stress can lead 
to neurodegenerative diseases such as AD. Excessive 
production of ROS triggers intracellular oxidative stress. 
Hydrogen peroxide (H2O2) is a reactive oxygen species 
and an important inducer of oxidative stress, which is 
used in the study of neurodegenerative diseases, such as 
AD, that are caused by oxidative stress [12]. We treated 
HT22 cells with H2O2 to establish an intracellular model 
of AD. In MTT assays, 8 μM CK significantly increased the 
survival rate of HT22 cells (Figure 1). Thus, 8 μM CK was 
used for metabolomics analysis.

We then investigated the potential protective effects 
of CK against H2O2-induced changes in endogenous 
metabolites of HT22 cells with 1H-NMR-based metabo-
lomics. Differentially present metabolites in each treat-
ment group were screened and identified, and the 
 primary metabolic pathways were analyzed.

Analysis of the 1H-NMR data combined with a com-
parison of previous studies enabled assignment of 

signals of the main metabolite components in the three 
groups of cells (Figure 2, Table S1). The peak values of 
the 1H-NMR spectra were normalized in MestReNova 
software, and the normalized peak data were imported 
into SIMCA-P software for partial least squares-discrimi-
nant analysis (PLS-DA) analyses.

The PLS-DA method removes interfering factors that 
are not associated with sample classification and max-
imizes the differences between groups. The results 
revealed differences in cell metabolite composition 
between the control and model groups (Figure 3a). The 
values of parameters R2Y and Q2Y were 0.815 and 0.986, 
respectively, thus indicating that the established PLS-DA 
model had good fit and predictability (Figure 3b). The 
CK group cluster was distinct from the model group 
cluster (Figure 3c), thereby indicating that the CK group 
differed from the model group.

The loading plot (Figure 3d) showed that the metab-
olites farther away from the origin could be considered 
candidate biomarkers. The metabolites with variable 
importance (VIP) values (VIP1 and VIP2) > 1 and P < 0.05 
were highlighted as potential biomarkers. A total of 20 
metabolites were considered as potential biomarkers 
that inhibit oxidative stress injury. Detailed information 
on these biomarkers and trends in changes in these bio-
markers between groups are shown in Table 1.

These biomarkers were imported into the 
MetaboAnalyst 3.0 online analysis tool to perform 
enrichment and pathway analyses (metabolic pathways 
with an influence value > 0.1). The results suggested 
that CK regulates taurine and hypotaurine metabolism, 
pyruvate metabolism, alanine aspartate and glutamate 
metabolism, and glycine serine and threonine meta-
bolism (Figure 4a and b), thus decreasing oxidative 
stress damage.

Taurine, a well-known antioxidant, has potential 
antiapoptotic properties and exerts important regula-
tory effects on brain function; it has neuroprotective 
effects and improves cognitive function [13]. Taurine 
represents a key protein transformation node involved 
in amino acid and energy metabolism: it limits peroxida-
tion, regulates glutamate metabolism, inhibits nerve cell 
apoptosis, and protects nerve cell function. Increasing 
evidence suggests that taurine-induced neuroprotection 
is mediated by the antagonism of glutamate-induced 
excitotoxicity [14]. Taurine content was much higher in 
the model groups than the control group, possibly as 
a compensatory response to antioxidant damage [15, 
16]. Taurine content decreased after treatment with CK, 
thus indicating that CK decreased oxidative stress and 
eliminated the compensatory response.

Glycine is an amino acid with a simple structure that 
counteracts the production of ROS and attenuates 
H2O2-induced oxidative damage in neurons [17]. CK is 
also involved in glutathione metabolism, and glycine 
is the main precursor of glutathione synthesis [18]. 
Glutathione is an endogenous antioxidant that plays a 
key role in the defense against oxidative stress in the 

Figure 1 | Effects of CK treatment on cell growth.
Viability of cells treated with different concentrations of CK. Model: 
400 μM H2O2, CK1: 4 μM CK + 400 μM H2O2, CK2: 6 μM CK + 400 
μM H2O2, and CK3: 8 μM CK + 400 μM H2O2. 

bP < 0.01 vs. control 
group; cP < 0.05 and dP < 0.01 vs. model group. Values represent 
mean ± SD (n = 8).
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brain and counteracts neurotoxicity due to peroxides 
such as H2O2 [19]. Impaired glutathione metabolism 
may lead to neurodegenerative diseases such as AD. 
Therefore, maintaining glutathione metabolism 
homeostasis plays a crucial role in neuronal protection 
[20]. Our results showed that CK is involved in glycine 

metabolism and increased glycine content, and thus 
plays a role in regulating glutathione metabolism and 
H2O2-induced oxidative decreasing damage in HT22 
cells.

Glutamate, another essential precursor for glu-
tathione synthesis, participates in glutathione 

Figure 2 | Typical 1H NMR spectra of HT22 cells.
(a) Control group and model group. (b) Model group and CK group.
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Figure 3 | (a) PLS-DA score plot of the control and model groups. (b) Permutation test of the control and model groups. (c) 
PLS-DA score plot of the CK and model groups. (d) Loading plot. (e) PLS-DA score plot of the control, model, and CK groups.
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Table 1 | Potential biomarkers of oxidative stress.

No. ppm MW Metabolite KEGG ID Model/control CK/model

1 3.238 146.20 Acetylcholine C01996 ↑b ↓d

2 3.278 125.15 Taurine C00245 ↑b ↓c

3 1.358 90.08 Lactate C00186 ↑b ↓c

4 3.598 75.07 Glycine C00037 ↓ ↑d

5 3.838 89.09 Alanine C00041 ↑b ↓c

6 2.438 118.088 Succinic acid C00042 ↑b ↑

7 3.718 193.199 Phenylacetylglycine C05598 ↑b ↓c

8 1.958 60.05 Acetic acid C00033 ↓b ↑d

9 4.358 244.2 Uridine C00299 ↑a ↓

10 3.758 147.13 Glutamate C00025 ↓a ↑

11 0.958 131.18 Leucine C00123 ↑a ↓

12 2.678 149.21 Methionine C00073 ↑a ↓

13 3.958 131.133 Creatine C00300 ↑a ↓c

14 3.958 219.23 Pantothenic acid C00864 ↑a ↓c

15 3.198 162.20 O-Acetylcholine C01996 ↓a ↑d

16 8.478 45.01 Formate C00058 ↑a ↓

17 0.998 117.15 Valine C00183 ↑a ↓

18 2.038 175.14 N-Acetylaspartate C01042 ↓a ↑c

19 3.078 113.1 Creatinine C00791 ↓a ↓

20 3.558 180.16 Inositol C00137 ↓a ↑d

Notes: aP < 0.05, bP < 0.01, model group vs. control group; cP < 0.05, dP < 0.01, CK group vs. model group.

Figure 4 | Altered metabolic pathways in H2O2-damaged cells, visualized as (a) bubble plots and (b) an enrichment overview.
a: Alanine, aspartate, and glutamate metabolism; b: taurine and hypotaurine metabolism; c: glutathione metabolism; d: pyruvate metabolism; 
e: glycine, serine, and threonine metabolism; f: pantothenate and CoA biosynthesis; g: methane metabolism; h: glyoxylate and dicarboxylate 
metabolism; i: inositol phosphate metabolism; and j: D-glutamine and D-glutamate metabolism.
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metabolism [21] and is also an important neurotrans-
mitter in the brain. Intraneuronal homeostasis of glu-
tamate is essential for neuronal energy metabolism 
and amino acid metabolism; glutamate affects synaptic 
transmission and brain function. Several studies have 
shown diminished glutamate levels in the brains of 
patients with AD [22], in agreement with the results of 
the present study suggesting that CK may enhance ATP 
(Figure 5) levels in HT22 cells by regulating glutamate 
metabolism.

Some studies have indicated that phosphoinositide 
3-kinase (PI3K)/protein kinase B (PKA, also known as 
AKT) signaling is an important therapeutic target for 
the treatment of AD. Moreover, PI3K/AKT signaling is 
involved in the regulation of neuronal oxidative stress 
and energy metabolism in AD [23]. Therefore, we next 

detected the expression levels of components of the 
PI3K/AKT signaling pathway through western blotting. 
PI3K is a lipid kinase that generates phosphatidylin-
ositol-3,4,5-trisphosphate, which in turn promotes the 
translocation of AKT to the plasma membrane. PI3K/
AKT signaling influences neuronal plasticity, cell sur-
vival, proliferation, and apoptosis inhibition [24]. AKT, 
an important upstream regulator of GSK-3β, increases 
GSK-3β phosphorylation, thus inactivating GSK-3β. The 
antagonistic effects of GSK-3β activity influence cen-
tral-nervous-system axon regeneration. Of note, inhib-
itors of GSK-3β have been postulated to exert neuro-
protective effects [25]. The present results indicated that 
CK increased the expression of components of the PI3K/
AKT signaling pathway and improved regulation of the 
expression of proteins involved in energy-metabolism 
pathways (Figure 6).

We explored the effects of CK on endogenous meta-
bolites in oxidatively damaged neurons in vitro. CK also 
has neuroprotective effects in vivo [26]. Whether CK can 
cross the blood–brain barrier is unknown. Karpagam 
et al. have shown that CK can cross the blood–brain bar-
rier, according to ADMET assays [27], but further inves-
tigation is needed to determine whether this crossing 
also occurs in vivo.
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Figure 5 | Effects of CK on intracellular ATP levels of HT22 cells. 
Model: 400 μM H2O2, CK1: 4 μM CK + 400 μM H2O2, CK2: 6 μM 
CK + 400 μM H2O2, and CK3: 8 μM CK + 400 μM H2O2. 

bP < 0.01 
vs. control group; dP < 0.01 vs. model group. Values represent mean 
± SD (n = 8).

Figure 6 | Western blotting analysis of the expression of proteins associated with energy metabolism.
Model: 400 μM H2O2, CK1: 4 μM CK + 400 μM H2O2, CK2: 6 μM CK + 400 μM H2O2, and CK3: 8 μM CK + 400 μM H2O2 (a) and comparison 
of expression levels (b). bP < 0.01 vs. control group; cP < 0.05, dP < 0.01 vs. model group. Values represent mean ± SD (n = 3).
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