
NeuroImage: Clinical 4 (2014) 635–640

Contents lists available at ScienceDirect

NeuroImage: Clinical

j ourna l homepage: www.e lsev ie r .com/ locate /yn ic l
Prediction of stroke thrombolysis outcome using CT brain
machine learning
Paul Bentley ⁎, Jeban Ganesalingam, Anoma Lalani Carlton Jones, Kate Mahady, Sarah Epton, Paul Rinne,
Pankaj Sharma, Omid Halse, Amrish Mehta, Daniel Rueckert
Division of Brain Sciences, Imperial College London, Charing Cross Hospital Campus, Fulham Palace Rd., London W6 8RF, UK
Biomedical Image Analysis Group, Dept. of Computing, Imperial College London, South Kensington Campus, UK
⁎ Corresponding author. Tel./fax: +44 2033117284.
E-mail address: p.bentley@imperial.ac.uk (P. Bentley).

http://dx.doi.org/10.1016/j.nicl.2014.02.003
2213-1582/© 2014 The Authors. The Authors. Published b
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 29 October 2013
Received in revised form 14 February 2014
Accepted 14 February 2014
Available online 30 March 2014

Keywords:
Stroke
Thrombolysis
Prediction
Machine learning
Imaging
A critical decision-step in the emergency treatment of ischemic stroke is whether or not to administer
thrombolysis — a treatment that can result in good recovery, or deterioration due to symptomatic intracra-
nial haemorrhage (SICH). Certain imaging features based upon early computerized tomography (CT), in
combination with clinical variables, have been found to predict SICH, albeit with modest accuracy. In this
proof-of-concept study, we determine whether machine learning of CT images can predict which patients
receiving tPA will develop SICH as opposed to showing clinical improvement with no haemorrhage. Clinical
records and CT brains of 116 acute ischemic stroke patients treated with intravenous thrombolysis were
collected retrospectively (including 16 who developed SICH). The sample was split into training (n =
106) and test sets (n = 10), repeatedly for 1760 different combinations. CT brain images acted as inputs
into a support vector machine (SVM), along with clinical severity. Performance of the SVM was compared
with established prognostication tools (SEDAN and HAT scores; original, or after adaptation to our cohort).
Predictive performance, assessed as area under receiver-operating-characteristic curve (AUC), of the SVM
(0.744) compared favourably with that of prognostic scores (original and adapted versions: 0.626–0.720;
p b 0.01). The SVM also identified 9 out of 16 SICHs, as opposed to 1–5 using prognostic scores, assuming
a 10% SICH frequency (p b 0.001). In summary, machine learningmethods applied to acute stroke CT images
offer automation, and potentially improved performance, for prediction of SICH following thrombolysis.
Larger-scale cohorts, and incorporation of advanced imaging, should be tested with such methods.
© 2014 The Authors. The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Intravenous thrombolysis (tPA) is themost efficacious treatment for
acute ischemic stroke, but suffers a major complication rate of ~6%
(Wardlaw et al., 2012), due to symptomatic intracranial haemorrhage
(SICH). Whilst multiple factors have been associated with SICH
(Whiteley et al., 2012), selection of patients on the basis of anyone of
these, e.g. age or stroke severity, is not generally recommended (Leys
and Cordonnier, 2012), since tPA appears to confer a net benefit across
the range of all such baseline parameters (Sandercock et al., 2012).
Recognising that single factors in isolation are poor predictors of SICH,
several prognostic scoring systems have been developed (Lou et al.,
2008; Strbian et al., 2012) which estimate a cumulative risk of SICH
across a number of predictors, and provide thresholds above which
tPA use is discouraged. However, these are far from perfect — with
predictive performances, assessed by areas under receiver-operating
y Elsevier Inc. This is an open access
characteristic curves (AUC), in large validation cohorts, of 60–70%
(Mazya et al., 2013; Sung et al., 2013), partially explaining why such
scores are not yet in routine clinical practice. Consequently, there is a
compelling imperative to devise improved prognostic methods that
can more accurately identify combinations of features that determine
which patients will benefit from thrombolysis, versus be harmed by it.

An important set of predictors for SICH are radiological, based upon
acute CT scan, and include: acute ischemia, vessel thrombosis and back-
ground white matter disease (Neumann-Haefelin et al., 2006;Whiteley
et al., 2012). However, many such features – e.g. hypoattenuation of
middle cerebral artery territory – are poorly discriminated by CT,
resulting in inaccurate quantification, and significant inter-rater vari-
ability (Wardlaw and Mielke, 2005). Recently developed machine
learning techniques (Orrù et al., 2012), that can classify images based
upon features too subtle for the human eye, and recognise relevant
patterns across a vast array of clinical/imaging inputs, may enhance
our ability to predict SICH, and offer automation.

Here we test onemachine learningmethod, previously successful in
other neuroimaging diagnostic contexts (Gray et al., 2013; Orrù et al.,
article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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2012), for the ability to identify acute ischemic stroke patients at risk
of tPA-associated SICH, using raw CT-images, as compared with
radiologist-derived interpretations, in combination with clinical
variables.

2. Methods

We retrospectively identified all 330 acute ischemic stroke patients
treated with intravenous tPA in our hospital, for whom complete data
existed. From this, we extracted all 16 patients who later developed
SICH, defined here as any increase inNational Institute for Health Stroke
Scale (NIHSS)within 1week – i.e. neurological deterioration – judged to
be due to imaging-confirmed, intracranial haemorrhage. We chose a
definition of SICH that incorporated any clinical deterioration, along
with new haemorrhage (equivalent to that used in the National Insti-
tute of Neurological Disorders and Stroke (NINDS) trial), as opposed
to more conservative definitions (Seet and Rabinstein, 2012), so as to
maximise the number of cases, and since it is more likely that imaging
features can be weighted so as to relate to haemorrhage potential per
se, rather than haemorrhage resulting in deterioration above a certain
clinical threshold.

Since this is a proof-of-concept study, and owing to the considerable
resource intensity required by themultiple steps we performed on each
subject (see later), we selected only 100 non-SICH subjects as controls.
Downsampling of a group is also one method by which the problem of
case–control imbalance, as faced here, can be lessened (Mazurowski
et al., 2008). For this downsampling,we first excluded 28non-SICH sub-
jects (8%)who either incurred asymptomatic intracranial haemorrhage,
or showed no NIHSS score improvement. The rationale for leaving out
this group at an early stage of model development is that such subjects
are less important to identify (the benefit of tPA in these subjects is less
apparent than in controls whose NIHSS scores improvedwithout bleed-
ing), and because there is a higher chance that radiological features crit-
ical to SICH prediction would overlap with this group (especially
patients who developed asymptomatic intracranial haemorrhage). Of
the remaining 286 non-SICH patients, we selected a random but repre-
sentative subsample of 100. This was achieved by repeatedly sampling
100 subjects without replacement from a uniform distribution over
the original 286; comparing eachwith the remainder, using appropriate
statistical tests for each clinical and radiological baseline characteristic;
Table 1
Clinical and radiological characteristics of SICH and non-SICH groups.

Variable SICH

Gender/% males 63
Age/yrs 75.1 (69.3–80.9)
Treatment delay/min 136 (112–159)
Baseline NIHSS/42 15.3 (12.5–18.0)
Systolic blood pressure/mm Hg 161 (152–170)
Glucose/mmol/l 7.09 (6.3–7.9)
INR 1.08 (1.04–1.11)
Platelets/×109/l 234 (193–276)
Anti-thrombotic therapy/% 75
CT— acute ischemia/% 63
CT— acute ischemia N1/3 MCA territory/% 31
CT— hyperdense MCA sign/% 38
CT— white matter Fazekas score/3 0.81 (0.46–1.17)
SEDAN score/6 2.50 (2.97–2.03)
HAT score/5 1.63 (0.96–2.29)
SEDAN score— NIHSS, CT only/3 1.88 (1.44–2.31)
HAT score— NIHSS, CT only/5 1.63 (0.96–2.29)
‘Automated’ SVM/distance from hyperplane (arbitrary units) −3.25 (−6.47–−0.03)
‘Manual’ SVM/distance from hyperplane (arbitrary units) −3.55 (−8.45–1.34)

Mean (95% confidence intervals) quoted. Odds ratio and p-value relate to univariate logist
Haemorrhage; NIHSS: National Institute of Health Stroke Scale; INR: International Normalise
hyperdense MCA sign, and age (1 point each); HAT score predictors: glucose (1 point), CT acu
and SEDAN Scores (last two rows) included only NIHSS and radiological components of their o
resent subjects' predicted output values from support vectormachines using raw images, or rad
column characterises non-SICH subjects from the total cohort that were not analysed; this gro
and selecting the first such subset for which statistical non-significance
was found across all such comparisons. The characteristics of the
selected and remainder non-SICH groups are shown in Table 1.

The following baseline variables (i.e. prior to tPA) were obtained
from SICH and non-SICH groups: gender, age; treatment delay; NIHSS
score; blood pressure; serum glucose; prothrombin time; platelet
count; and prior anti-thrombotic therapy. Additionally, each baseline
CT was interpreted by three independent neuroradiologists, for the fol-
lowing features: presence and extent of acute ischemia, hyperdense
middle cerebral artery (MCA), and white-matter disease (Fazekas
score) (Wahlund et al., 2001). Radiologists were blinded to outcome,
but provided with clinical details (e.g. hemiparesis side) to mimic
real-world judgements. Radiology results were combined by taking
majority judgements or mean scores. Mean inter-rater variability
(Cohen's κ) was 0.355 for acute ischemic changes, and 0.673 for
hyperdense middle cerebral artery. Average time-to-scan was 9.4 min
before quoted treatment delay (Pearson's r = 0.91; p b 0.01). TPA
dosage was always 0.9 mg/kg, maximum 90 mg. The influence of each
variable in determining SICH, versus not, was assessed with univariate
logistic regression. Two validated SICH-prognostic tools – SEDAN
(Strbian et al., 2012) and HAT (Lou et al., 2008) scores – that are
composites of the above variables, were also compared between the
two groups. Since we found in our cohort, that glucose and age non-
significantly predicted SICH, and in order to match inputs between
automated and standard approaches, we calculated ‘adapted’ SEDAN
and HAT scores that included only their radiological and NIHSS compo-
nents. The inter-rater reliability of SEDAN and HAT scores based
upon the three radiology judgements was 0.639 and 0.624 respectively
(linear-weighted Cohen's κ).

Baseline CTswere acquired fromone of two SiemensDefinition AS+
128-slice scanners, in two sections covering upper two-thirds of the ce-
rebrum (matrix size: 512 × 512 × (10 - 12); resolution: 0.4 × 0.4 ×
9.0 mm) and brain base (512 × 512 × (18 - 24); 0.4 × 0.4 × 3.0 mm).
Note that CT brains are often acquired in two parts in clinical practice,
e.g. so as to enhance sensitivity to basal lesions. Using SPM8, upper
and lower brain images were re-oriented, and spatially normalised to
whole-brain and lower-brain CT templates respectively (derived from
30 healthy subjects withmean age of 65 (Rorden et al., 2012)), resulting
in two images sized 79 × 95 × 68 (2 mm3 resolution) (Fig. 1A–C). The
two images were joined in a common space, taking voxel averages
No SICH Odds ratio p-Value No SICH (excluded)

49 1.74 (0.59–5.14) 0.320 51
73.2 (70.7–75.7) 1.01 (0.97–1.05) 0.572 70.6 (68.3–72.9)
146 (134–158) 1.00 (0.99–1.01) 0.509 152 (139–166)
12.3 (11.2–13.3) 1.10 (1.00–1.21) 0.048* 10.2 (9.1–11.3)
162 (156–167) 1.00 (0.98–1.02) 0.949 155 (151–159)
7.55 (7.04–8.05) 0.92 (0.71–1.18) 0.490 7.26 (6.88–7.65)
1.31 (1.05–1.57) 0.14 (0.00–28.5) 0.329 1.16 (1.01–1.32)
238 (221–254) 1.00 (0.99–1.01) 0.880 253 (242–265)
62 1.84 (0.55–6.11) 0.320 51
27 3.31 (1.12–9.74) 0.008** 24
6 5.22 (1.29–21.2) 0.004** 3
17 4.41 (1.42–13.6) 0.064 19
1.13 (0.95–1.31) 0.64 (0.33–1.24) 0.185 1.14 (1.01–1.26)
2.05 (1.82–2.28) 1.43 (0.90–2.30) 0.146 1.66 (1.46–1.85)
1.03 (0.82–1.24) 1.49 (0.95–2.32) 0.053 0.75 (0.60–0.89)
1.10 (0.91–1.29) 2.23 (1.28–3.89) 0.006** 0.82 (0.65–0.95)
0.95 (0.75–1.15) 1.60 (1.02–2.52) 0.027* 0.64 (0.50–0.78)
3.25 (2.31–4.19) 1.28 (1.12–1.45) b0.0001** n/a
3.55 (1.81–5.30) 1.08 (1.02–1.14) 0.008** n/a

ic regression analyses comparing SICH with non-SICH. SICH: Symptomatic Intracranial
d Ratio. SEDAN score predictors: glucose (2 points), baseline NIHSS, CT acute ischemia,
te ischemia N or b1/3 MCA territory, and baseline NIHSS (2 points each). ‘Adapted’ HAT
riginal versions, with identical weightings for these. ‘Automated’ and ‘Manual’ SVMs rep-
iological scores (acute ischemia, hyperdenseMCA sign), respectively, *b0.05; **b0.01. Final
up did not differ significantly from the analysed group in any of the measured variables.
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where these overlapped (Fig. 1D). Resultant images were then masked
inclusively for brain (without ventricles), resulting in 208,018 data-
containing voxels per subject. From these, voxels were deleted where,
in 5 or more subjects, these assumed anomalous values for brain (b0,
N200HounsfieldUnits), resulting in 181,311 voxels per subject. Deleted
anomalous values occurred mostly where patients' crania tended to
overlap template-brain edges, due to imperfect spatial normalisation
(Fig. 1E). For voxels where b5 subjects showed anomalous values
(most commonly due to non-sampled voxels at the join between the
upper and lower sections) we replaced these values with their mean
from the remaining sample. This way, we minimized the influence of
rare anomalous values, whilst still enabling the rest of subjects to con-
tribute data to these voxels (many of whichwere in potentially relevant
areas around middle cerebral arteries,— see Fig. 1F). Images were then
corrected for global mean intensity.

Automated SICH prediction was implemented by a support vector
machine (SVM), using a multilayer perceptron kernel, implemented
within MATLAB R2012b. Given previous studies suggesting that SICH
is associated with widespread brain features e.g. small-vessel ischemia,
old strokes, or atrophy, (Gebel et al., 1998; Neumann-Haefelin et al.,
2006; Sarikaya et al., 2011), in addition to inter-hemispheric asymmetry
of parenchymal hypoattenuation (Dubey et al., 2001), we utilized the
entire optimized CT image (single vector of 181,311 voxels per subject)
as the feature-space input to our ‘automated’ SVM. Such a method is
also more robust and user-independent than one requiring prior clini-
cal, and/or radiologist judgements, regarding potentially relevant radio-
logical features. Baseline NIHSS – which in our sample was the only
significant non-radiological predictor of SICH – was incorporated by
proportionately adjusting the contribution that each CT scan provided
to the model. This was achieved by varying the soft margin parameter
A - Source B - Template C

E – Anomalous voxels ( 5 subjects)  F

Fig. 1. Example of CT normalisation pipeline in one subject. Source imageswere acquired in top
templates (B). The twonormalised images (C)were joined (D)wherebyvoxels thatwere sample
‘join’ anteriorly). The resultant images were inclusively masked by a brain template, but som
E shows where this occurred in ≥5 subjects, these voxels then being excluded. Most patients a
subjects. These and other anomalous voxels that occurred in b5 subjects were replaced by the
for each datapoint, inputted as a vector of NIHSS values into the
‘boxconstraint’ argumentwithin theMATLAB svmtrain function. The re-
sultant model generates a hyperplane across the entire image-feature
space, relative towhich future cases can be characterised. An alternative
‘manual’ SVM was constructed that inputted baseline NIHSS, together
with radiological interpretations of acute ischemia extent and
hyperdense MCA (Dharmasaroja and Dharmasaroja, 2012), rather
than the images themselves.

To assess the predictive capabilities of SVMs, and established
prognostic scores, we used k-fold cross-validation, by which we split
the entire sample into 106 training (for SVM), and 10 test, subjects,
over 1760 repetitions. The rationale for this was so that every test set
was composed of 1 patient who developed SICH, and 9 who did not —
thereby maximising the number of SICHs within each training set, at
the same time as testing under an approximately realistic assumption
of a 10% SICH frequency. Distances of each test image relative to the
SVM hyperplane were estimated, from which classifications using one
of ten evenly-spaced thresholds were made, allowing for AUC calcula-
tion. Additionally, for each test set of 10 subjects, the distances-to-
hyperplane were ranked, from which the rank of the SICH target could
be ascertained. This way we identified which of the 16 SICHs were
successfully predicted by each model (i.e. assigned top rank out of 10).

Variations of the SVM model were also tested by eliminating
baseline clinical severity as a soft-margin input; excluding brain
base; and excluding the least-relevant cerebral hemisphere as judged
clinically — i.e. from sensorimotor deficit laterality or aphasia.
Lateralising features were present in all our patients; although whether
patients were eventually diagnosed with brainstem–cerebellar stroke
was not accounted for, given that practically such strokes cannot be
reliably distinguished by clinical signs (Tao et al., 2012).
 - Normalized D - Joined 

 – Anomalous voxels (1-4 subjects)  

and bottom sections (A) that were normalised respectively to whole-brain and bottom CT
d inboth imageswere averaged, and somevoxelswere sampled inneither (seen as a black
etimes this included patients' cranium (revealed as anomalous Hounsfield Unit N 200):
lso showed a thin non-sampled join, although the location of this differed slightly across
ir mean from the remaining set of subjects, and are identified in F.

image of Fig.�1
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The studywas ethically approved by the local Joint Research Compli-
anceOffice but did not require patient consent, using only retrospective,
non-identifiable data.

3. Results

Characteristics of patients who developed SICH, versus those who did
not, are displayed in Table 1. In our cohort the only significant predictors
of SICH were baseline NIHSS; and CT evidence for acute ischemia (p
b 0.05). For comparison with these standard predictors, the bottom two
rows show support vectormachine outputs for SICH and non-SICH groups,
using raw CT images (‘automated’ SVM), or radiologist-derived scores
(‘manual’ SVM), respectively (both in combination with baseline NIHSS).

Whilst both standardised prognostic scores and SVMs significantly
discriminated SICH from non-SICH subjects, the relative classificatory
performance of each type of prognostic system was assessed by
calculating areas under receiver-operating characteristic curves (AUC)
(Table 2, column 2). The AUC of the ‘automated’ SVM incorporating
NIHSS and raw imaging data (0.744) was superior to that of the SEDAN
and HAT scores, using either original or adapted versions of these scores
(0.626–0.720; p b 0.01 for all). The ‘automated’ SVM was also superior
to that of the ‘manual’ SVM that included baseline NIHSS and consensus
radiologist interpretations (AUC: 0.671; 4 successful selections; p b 0.01).

We also assessed the relative performance of each classificatory sys-
tem by seeing howmany of the 16 SICHs, tested one at a time, each sys-
tem could discriminate against 9 foils (this is equivalent to constraining
each system to label only 10% of test items as SICH) (Table 2, columns 3–
end). For this test, the automated SVM selected the correct subject
9 times (most commonly), as compared to 1–5 times using either orig-
inal or adapted SEDAN and HAT scores, or ‘manual’ SVMs (p b 0.001). It
is notable that the automated SVM predicted 3/4 cases where the SICH
was remote from the original acutely ischemic territory, in comparison
to none using the standard models.

Finally, the automatedSVMasdescribed showed inferior predictiveper-
formancewhenwe removed baseline NIHSS from themodel (AUC: 0.622);
or by excluding the base image (AUC: 0.640); or by excluding the least-
relevant hemisphere, as judged by clinical information (AUC: 0.557)
(all comparisons with the whole-brain, NIHSS-adjusted SVM, p b 0.01).
Table 2
Predictive performance of automated SVM compared to other prognostic methods.

Model AUC 1 2 3 4 5 6

Automated SVM 0.744
(0.738-0.748) 1 1 1 2 6 3

Manual SVM 0.671
(0.669-0.673) 1 1 7 1 2 10

SEDAN 0.626
(0.625-0.627) 1 2 8 2 2 8

HAT 0.629
(0.628-0.630) 2 1 9 1 2 5

SEDAN – NIHSS, CT
    only

0.720
(0.720-0.721) 1 2 4 1 1 9

HAT – NIHSS, CT
    only

0.648
(0.647-0.649) 2 1 9 1 3 4

Acute ischemia n/a ** *** 0 *** *** *

Hyperdense MCA n/a *** 0 0 *** ** 0

SVM: Support vector machines, using either raw images (‘automated’) or radiologist-derived r
AUC: area under receiver operating characteristic curve (95% confidence intervals).
SICH identity: For each SICH, the commonest ranking accorded by eachmodel to the SICH subjec
Coding: ‘1’ representsmost likely to develop SICH, and ‘10’ least likely. A bold '1' (shaded box) in
most likely out of 9 alternatives. Final two rows indicate the number of radiologists (0–3 repre
tory), or MCA hyperdensity.
aThese subjects' haemorrhages were judged to be remote from the acute ischemic territory.
4. Discussion

This is the first study to highlight the potential utility of imaging-
based machine learning for predicting outcomes from stroke
treatment. Not only have we shown that one such technique can
offer automation — in place of error-prone radiology judgements
(Wardlaw and Mielke, 2005), but also our results suggest that
predictive performance may be enhanced over standard methods.
Importantly, since our automated SVM was successful at SICH predic-
tion using whole-brain as the input, rather than ad hoc feature combi-
nations, and by assessing performance with cross-validation, our
results are unlikely to have arisen by chance, or by data overfitting, de-
spite a relatively small sample size. Furthermore, whilst the absolute
improvement in AUC classificatory performance conferred by the
‘automated’ SVM was only ~2% greater than a conventional score-
based system optimized for this dataset (and so not strictly cross-
validated), the SVM was 10% better than the best prognostic system in
its original, validated formulation; and moreover recognised twice as
many SICHs when constrained to label only 10% of test items as hits,
than any of the other methods. The probability of selecting, at random,
1 SICH out of 9 foils, in 9 out of 16 different tests, as the automated SVM
achieved, is (from the binomial expansion) 5 × 10−6.

A recent meta-analysis of SICH risk factors reported that at least
12 variables increase SICH likelihood, but their effect sizes are modest,
emerging only from cohorts of thousands, and cannot in isolation
identify patients at risk (Whiteley et al., 2012). This may explain why
univariate analyses from our own relatively small dataset showed that
only clinical severity and early ischemic CT changes were significant
predictors of SICH. Prognostic systems – that integrate a range of risk
factors into a single risk score – offer a practical way of stratifying risk.
However, these have been shown in large validation cohorts to be far
from optimal (Mazya et al., 2013), and achieved AUC values of only
63% in our cohort (using either), whichmight be because suchmethods
assume linearity and independence between predictors.Machine learn-
ing by comparison does not make these assumptions, and may be the
most suitable method when a very large number of factors (including
imaging features) determine dichotomous outcomes, but where the
mapping relationship is unknown or complex (Orrù et al., 2012).
SICH identity

7a 8 9 10a 11a 12a 13 14 15 16

1 4 9 1 1 8 1 1 2 1

2 4 1 10 3 2 2 2 2 3

5 4 3 6 5 2 4 5 5 3

5 2 1 8 5 2 5 10 8 1

2 4 1 2 6 3 3 1 6 2

5 2 1 8 5 2 5 8 7 1

** * *** * 0 ** ** 0 0 ***

0 0 *** * 0 0 0 *** *** 0

eports of acute ischemia and hyperdense MCA (‘manual’).

t is reported, across 110 tests, comprising 1 patientwhodevelops SICH, and 9who recover.
dicates that the specifiedmodel correctly predicted the specified SICH, in terms of placing it
sented as *) reporting acute ischemia (underlined if majority judged to be N1/3 MCA terri-

Unlabelled image
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One recent report showed that machine learning techniques can help
with SICH prediction, but used radiologist interpretations (along with
clinical variables), rather than images themselves (Dharmasaroja and
Dharmasaroja, 2012). Replicating a similar technique with our dataset
(‘manual’ SVM) did not improve predictive performance over existing
prognostic scores. By contrast, the automated SVM that utilizes raw
CT images, and clinical variables, was superior to the ‘manual’ SVM, and
to standard prognostic scores (even after adapting these to include only
significant predictors of our cohort). Similar to studies applying SVMs to
MRI imaging in Alzheimer's disease (Klöppel et al., 2008), our results
demonstrate that SVM techniques allow for effective classification
where the number of features is far greater (here, ~180,000) than the
number of training datapoints, unlike standard multivariate regression
techniques.

Since themost successful imaging SVMwe tested took whole-brain,
rather than selected subparts, as its inputs, it seems likely that diffuse
features, e.g. texture, morphometry, or low spatial-frequency changes,
underlie the predictive effect we observe, rather than more focal fea-
tures e.g. dense middle cerebral artery. This is supported by our finding
that the SVM model was able to predict 3 out of 4 SICHs occurring re-
motely from the infarcted territory, as opposed to none predicted by
conventional methods — implying that background brain features may
be just as important as focal CTmarkers of acute ischemia. Certain back-
ground CT appearances, relating to small-vessel ischemia, old strokes
and atrophy (Gebel et al., 1998; Neumann-Haefelin et al., 2006; Pantoni
et al., 2014) are recognised predictors of SICH; as are several conditions
that predispose to these radiological features, e.g. age, diabetes, renal
failure (Whiteley et al., 2012). Although the risk sizes associated with
each of these factors are modest, and whilst we did not find an associa-
tion between SICH and hemispheric white matter lesion load, it is
possible that crude, human estimates of overall white-matter load
(Wahlund et al., 2001), are less relevant to haemorrhage risk than
spatial patterns of hypoattenuation across the whole brain, that the
SVM model takes as inputs. The SVM model may also appreciate pat-
terns of cerebral atrophy related to amyloid angiopathy (Erten-Lyons
et al., 2013)— itself a predisposing factor for intracerebral haemorrhage.

A further possible explanation for the SVM's predictive ability is that
it is sensitive to the extent of focal, acute ischemic changes (territorial
hypoattenuation, or grey–whitematter effacement), that are associated
with SICH (Whiteley et al., 2012), as was also found in our sample from
a univariate analysis. The fact that the SVM taking a whole-brain input
was more successful than inputting only the clinically-relevant brain
part, or cerebrum only, may be because sensitivity to acute ischemic
changes is optimized by comparing feature patterns between hemi-
spheres (Dubey et al., 2001), or between posterior fossa and hemi-
spheres; or because the possibility that some strokes were in the
posterior circulation was not taken into account by analyses restricted
to cerebral hemispheres (given the practical scenario inwhich only clin-
ical information and early unenhanced CT are available, which are only
poorly able to distinguish arterial territory (Tao et al., 2012)). However,
we also found that the SVM's performance improved by adjusting for
clinical severity— similar to SEDAN and HAT scores, that combine clin-
ical severity with acute radiological features. This suggests that acute is-
chemic changes evident on unenhanced CT are less accurate at
reflecting acute ischemia volume – a critical determinant of SICH
(Campbell et al., 2012) – as when clinical severity is factored in (Fink
et al., 2002). Thus our SVMmodel of SICH riskmay reflect an interaction
between background brain features and acute ischemia volume, the lat-
ter is at least partly estimable by clinical assessment.

Whilst our results indicate that machine learning may help predict
SICH over existing prognostic schemes, we recognise that our study
has several limitations. Firstly, only a relatively small number of SICH
cases were available (representing ~5% treated cases from a single
stroke centre), making it difficult to knowwhether an SVMmodel sim-
ilar to the one used here could generalize to a larger number of cases,
treated in different centres, using different CT protocols etc. Future
studies should include all thrombolysed patients, including non-SICH
subjects whose NIHSS score did not improvewith tPA, or asymptomatic
intracranial haemorrhages, both ofwhichwe excluded from this explor-
atory study. It would also be interesting to test predictivemodels on pa-
tients who were potentially-suitable for thrombolysis but not treated
with thrombolysis because of clinicians' judgements about SICH risk.
Acquiring an unbiased dataset may be best achieved prospectively, al-
though incorporation of real-world, noisy data, e.g. by usingNIHSS eval-
uations from a range of specialists (as here), is desirable in developing a
predictive model for use in other real-world contexts.

A second problem, and one that will most likely apply to all future
studies of SICH prediction, is that such datasets will be highly imbal-
anced towards cases without SICH. Imbalanced designs tend to bias
models towards the majority case, which in this context, may exacer-
bate false-negative errors, but which can be mitigated by various adap-
tive methods (Mazurowski et al., 2008). To this end, we lessened the
imbalance by downsampling from the non-SICH group whilst ensuring
that those analysed did not differ significantly from those not.

A third set of challenges, thatwe have not explored, relates to the se-
lection of image-space features, which may improve classification.
However, with relatively small datasets, as here, there is a danger that
ad hoc feature optimization overfits the data, identifying features by
chance. A further issue, given the highly-variable, territorial nature of
stroke is that the anatomical features selected may need to be adapted
to individual cases — unlike the case for many existing neuroimaging
machine learning applications e.g. Alzheimer's disease. For example,
based upon established radiological predictors of SICH, relevant features
may be those related to unilateral middle cerebral artery density, or
acute ischemic changes (Whiteley et al., 2012). However, this then be-
comes problematic because of the need for interpretation, e.g. is a
right hemiparesis due to infarction of the left hemisphere or brainstem?
(Tao et al., 2012); and extra image processing, e.g. individualised de-
marcation of themiddle cerebral artery, or its supplied territory. Recent
automated methods to identify acute ischemic changes or vessel
hyperdensity (Takahashi et al., 2012, 2014)may be useful in this regard.
It is also likely that advanced imaging techniques e.g. CT angiogram/
perfusion or MRI, which are increasingly used in clinical practice, and
are more sensitive than non-enhanced-CT to haemorrhage-associated
features e.g. microbleeds (Charidimou et al., 2013), or infarct volume
(Campbell et al., 2012), may provide superior information to machine
learning-based models, but raise the challenge of how multimodal
data can be optimally combined for prediction (Gray et al., 2013).

A final consideration is that the image-processing steps required for
case prognostication here were relatively inefficient (scans had to be
exported, and two sections had to be joined), and timely (~30 minute
processing per scan). Clearly, for such a method to have any practical
usefulness these stepswould need to bemademore rapid and automat-
ed, and ideally, implemented on a single scanner PC.

In conclusion, our study shows that machine learning applied to
unenhanced CT can distinguish patients destined to suffer thrombolysis-
associated SICH, from those who will respond well to thrombolysis; and
moreover, perform this with higher accuracy than conventional,
radiology-basedmethods. Larger studies are justified to explore such tech-
niques in patients with all types of thrombolysis outcome; and for other
important stroke-prognostic questions, e.g. predicting successful
responses to treatment, and long-term functional recovery.
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