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TEVAR and EVAR, the unknown
knowns of the cardiovascular
hemodynamics; and the
immediate and long-term
consequences of fabric material
on major adverse clinical
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This review discusses the impact of endovascular aneurysm repair on
cardiovascular (CV) hemodynamics and the role of stent-graft material, i.e.,
polytetrafluoroethylene (PTFE) vs. polyester in post-procedural outcomes.
Endovascular aneurysm repair has been widely employed in the last decades
for thoracic and abdominal aneurysm repair. However, aortic endografts are
stiff and alter the native flow hemodynamics. This failure to simulate the native
aorta could lead to added strain on the heart, manifesting as increased left
ventricular strain, higher pulse pressure, and congestive heart failure later. This
could result in adverse CV outcomes. Also, evidence is mounting to support
the implication of stent-graft materials, i.e., PTFE vs. polyester, in adverse post-
procedural outcomes. However, there is an absence of level one evidence.
Therefore, the only way forward is to plan and perform a randomised
controlled trial to demonstrate the alterations in the CV hemodynamics in the
short and long run and compare the available stent-graft materials regarding
procedural and clinical outcomes. We believe the best solution, for now, would
be to reduce the stented length of the aorta. At the same time, in the longer
term, encourage continuous improvement in stent-graft materials and design.

KEYWORDS

abdominal aortic aneurysm (AAA), endovascular aneurysm repair (EVAR), thoracic

endovascular aneurysm repair (TEVAR), stent-Graft material, cardiovascular outcome

Introduction

Compared to open surgical repair, endovascular repair of the thoracic and

abdominal aorta has been shown to reduce early perioperative morbidity and

mortality (1, 2). However, this advantage is not maintained later due to an

increment in cardiovascular (CV) complications secondary to arterial stiffening by
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endograft (3). It is, therefore, essential to be aware of the

impact of endograft design, their relative configuration, and

stiffness compared to the native aorta (3–5). Also, the role of

the endograft composition and structural design (i.e.,

endograft materials—polyester vs. polytetrafluoroethylene

(PTFE), stent wires—nitinol vs. stainless-steel stent vs.

cobalt-chromium) on the post-procedural outcomes needs to

be acknowledged (3–9).

This review discusses the impact of endograft on CV

hemodynamics in the first half and, subsequently, in the

second half, the impact of stent-graft material, i.e., PTFE vs.

polyester, in post-procedural outcomes, including post-

implantation syndrome.
Materials and methods

This study was conducted through a non-structured online

literature search (PubMed, Google Scholar and EMBASE) using

the keywords—“Cardiovascular Hemodynamics,” “Cardiovascular

Complications,” “Cardiovascular Outcomes,” “Abdominal Aortic

Aneurysm,” “AAA,” “Endovascular Repair,” “TEVAR,” “Thoracic

Endovascular Aneurysm Repair,” “EVAR,” “Endovascular

Aneurysm Repair,” “Endograft,” “Stent-graft material,” “PTFE,”

“Polytetrafluoroethylene,” “Polyester,” and “Outcome.” No

selective restrictions were made on the type of studies,

publication year and language. A secondary reference search

was used to obtain further studies.
Impact of EVAR and TEVAR on
cardiovascular haemodynamics

Aortic endografts are stiffer than the native aorta, and even

the best available contemporary endograft design could

potentially alter the flow haemodynamics (3–5). Studies have

shown that aortic endografts could significantly reduce

coronary perfusion by elevating systolic blood and pulse

pressure (5–7, 10). These patients suffer on and off chest

pain and systolic hypertension from early postoperative days.

However, the broader CV community lack insight regarding

cardiac remodelling post-aortic stents as interventionalists

primarily focus on endo-graft adaptation rather than

hemodynamic alterations. Furthermore, our follow-up

protocols are based only on close supervision for endograft

migration, detecting endoleak and aortic sac regression, for

which we are not afraid of further stenting and coiling,

thereby creating a stiffer aortic wall, which could further

compromise cerebral, cardiac, renal, and mesenteric

perfusion (3–7).
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Pathophysiology

The aorta receives the left ventricle (LV) stroke volume in

systole, which is distributed peripherally through the stored

aortic elastic forces gained during diastole. This aortic

compliance and blood flow through the aorta is best

represented by the “Windkessel effect” (Figure 1) (10).

Windkessel effect impact both the heart and the peripheral

circulation. Aortic compliance decreases the LV afterload.

Furthermore, blood collected within the distended aorta helps

to enhance coronary perfusion.

A mismatch between the native aortic to endograft

compliance could manifest as adverse CV outcomes. Any

change in the Windkessel effect could significantly increase

the LV burden, resulting in adaptative LV hypertrophy and

loss of ventricular-arterial coupling (11, 12).

As aortic endografts are less compliant than the native

aorta, insufficient compliance results in a surge in

hemodynamic shifts that impair CV homeostasis (3, 5, 8).

Arterial stiffening results in elevated systolic blood pressure

but lowers diastolic blood pressure, further exacerbating LV

afterload, resulting in mal-perfusion of the coronaries. These

changes contribute to LV hypertrophy, coronary ischemia,

and arterial wall tissue fatigue, which are independent risk

factors for CV morbidity and mortality (10–14).

Rong et al. (15) demonstrated amplification of

circumferential strain in the descending thoracic aorta,

paralleling distensibility by using intra-operative

transoesophageal echocardiography to study the effect of

endograft on the haemodynamic alteration. They showed that

prosthetic replacement of the ascending aorta could interfere

with the propagation of energy to the distal aorta resulting in

adverse aortic remodelling. These results explain the

development of resistant systolic hypertension post-TEVAR/

EVAR with shortness of breath (SOB) and intermittent chest

pain.

The impact of aortic flow dynamics on the LV function has

been studied in experimental models (16), animals (17) and

clinical studies (18). These studies support the Windkessel

theory to establish the role of aortic capacitance in resultant

ventricular size and function. However, the stented aorta loses

its elasticity following simple and/or complex endovascular

procedures, like TEVAR, FEVAR, BEVAR, and ChEVAR,

failing the Windkessel effect. This failure of the Windkessel

effect and change in pulse wave propagation multiplies a

substantial workload for the LV putting an extra strain on the

aortic valve’s functioning. The resultant adaptative LV

hypertrophy will manifest as CV complications (10–12).

The negative impedance due to endograft and LV strain will

cause a decrease in diastolic systemic BP and reduces coronary

blood flow and myocardial ischemia without coronary artery

stenosis (10, 13). Sultan et al. (3, 5, 8, 10, 14–18) documented
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FIGURE 1

A schematic human heart diagram showing (10): (A) normal cardiovascular hemodynamics during systole and diastole. (B) Endograft in the thoracic
aorta increases arterial stiffness, causing left ventricular (LV) strain and subsequent hypertrophy. Furthermore, impaired LV filling decreases coronary
blood flow, resulting in non-occlusive ischaemia.
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cardiac dysfunction on the postoperative echocardiograms of

TEVAR/EVAR cases, with moderate LV hypertrophy and

diastolic dysfunction. This is manifested by an increase in

proBNP, which supports myocyte stretching and ventricular

strain. Moreover, there was a significant troponin rise without

coronary artery stenosis. Furthermore, the coronary angiography

confirmed the absence of the coronary blockage, which supports

the alternative explanation of coronary hypoperfusion following

reduced diastolic pressure (Figure 2) (10).

Aortic compliance mismatch and hemodynamic alterations

will be more evident after increasing the length of the stented

aorta, for example, following combined TEVAR and EVAR.

As such, endograft tend to adapt to these increments in shear

stress. Studies have shown gradual endograft dilation after

open surgical repair (3.2% per year post repair) (19–22). This

could sometime result in excessive strain on the fabric

architecture and the development of new aneurysms (10, 13).

Aortic integrity affects CV outcomes. This is evident in

acute aortic syndrome, where CV complications are the main

culprit for the late rehospitalisation after discharge (23, 24).
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Weiss et al. (24) showed nonfatal CV events and heart failure

in patients with aortic dissection, intramural hematoma

and penetrating aortic ulcer. These outcomes strengthen the

need for long-term CV follow-up following endovascular

aortic repair.
Pulse wave velocity

One of the ways to measure the impact of endograft stiffness

on aortic impedance is to measure PWV.

PWV represents arterial stiffness, as higher arterial stiffness

is seen with higher PWV. Subsequent increment in PWV

increases the CV morbidity and mortality. Interesting, PWV

could increase within a few hours of TEVAR and/or EVAR

(21, 22, 25). TEVAR and EVAR increase the PWV by 2–5

and 1–3 m/s; however, a combined TEVAR/EVAR will result

in an increment of 3–8 m/s (21, 22, 25). Blacher et al. (21)

acknowledged that 1 m/s of PWV increment would double

the all-cause mortality.
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FIGURE 2

A female in her seventies with a saccular aneurysm in the descending thoracic aorta (10). She had thoracic endovascular aortic repair (TEVAR) in 2015
and subsequently underwent endovascular repair of her infrarenal aortic aneurysm in 2018. Her background history included ex-smoker,
hypertension, lipid disorder, and right femoral-popliteal percutaneous transluminal angioplasty. (A) A 3D-CTA reconstruction, showing thoracic
endograft. Following the TEVAR, the patient complained of intermittent chest pain and shortness of breath. A coronary angiogram was
performed after her symptoms worsened. (B) Coronary angiogram (right main coronary artery) with no evidence of occlusive coronary disease.
(C) Coronary angiogram (left main coronary artery) with no evidence of occlusive coronary disease.
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TEVAR has been shown to increase LV stroke work by 26%

(26). Van-Bakel et al. (16) showed that structural stiffness

increased from 10.2 to 154.6 MPa/mm post-TEVAR. This is a

15-fold increase in workload for the heart within minutes of

deployment of a TEVAR; as the heart was not preconditioned,

the CV haemodynamic changes accelerate over time.

Furthermore, increment in vascular stiffness with endograft

results in ventricular diastolic dysfunction, thereby negatively

impairing exercise tolerance amongst patients with lower LV

distensibility (11, 12, 27).

We contemplated that PWV could be utilised in risk

assessment in the peri-operative period post-TEVAR/EVAR.

Risk stratification provides an opportunity to address

hemodynamic alterations and modulate the CV risk (21, 22, 25).
Impact of stent-graft materials on
post-procedural outcomes and
post-implantation syndrome

A 4-dimensional strategy (14) is necessary to manage

complex aortic pathologies as altered haemodynamic forces

increase wall shear stress and impair blood flow, causing flow

turbulence, pressure gradients, and blood viscosity increment.

It involves the morphological adjustment and hemodynamic

milieu of natural body forces since the resultant flow

disturbance affects the management outcome (14).
Frontiers in Surgery 04
Sultan et al. (10) documented that patients with combined

TEVAR and EVAR can develop adaptive LV hypertrophy and

diastolic dysfunction. This could result in a clinical picture

like lower limb oedema, SOB, and chest pain with a normal

coronary angiogram (Figure 2) (10).

The increase in aortic stiffness post-TEVAR could be seen

earlier than EVAR due to proximity to the heart (28).

However, the length of the stented aorta also matters.

Combined TEVAR and EVAR in this regard have earlier and

more pronounced impacts (10). Nonetheless, it is prudent

that all the available endograft are less compliant than the

native aorta (16, 29).

In terms of the endograft material, the Liapis group (30)

showed that endograft made with polyester results in a

threefold increment in PWV than PTFE.

We witnessed that TEVAR patients developed the

abdominal aortic disease after endograft implantation (10). In

these patients, worsening hypertension and late CV

complications were potentiated by having a stiff tube in the

aorta. This necessitates studies that specifically focus on CV

complications post-aortic endograft. Also, it is possible that

careful analysis of the endograft based registry could answer

that question at present.

Patients with connective tissue disorder, like Marfan’s

syndrome, have a defect in the aortic wall, which could

further complicate the compliance mismatch and result in

aneurysmal dilatation.
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Suppose this is explained to young trauma patients post

aortic transection who underwent emergency TEVAR. This

will result in unexplained congestive cardiac failure and

dilated cardiomyopathy post-TEVAR in many young patients

following aortic trauma.

Modified and complex endovascular techniques (BEVAR,

FEVAR, PETTICOAT (31), STABILISE (32), FLIRT (33),

Candy Plug (34), Knickerbocker (35), and Kinetic Elephant

trunk (36) could provoke additional aortic wall stress. The

risk of these CV complications increases more when stents are

deployed closer to the heart and aortic valve (7, 36–39).

We acknowledged in our previous publications that the best

solution is to reduce the length of the stented aorta through a

“Staged hybrid single lumen reconstruction (TIGER)” protocol

(3, 4, 26, 40, 41). TIGER protocol combines open abdominal

aortic repair with thoracic aortic stenting. For this, we first

create a single lumen from supra celiac, infra-diaphragmatic

aorta to bilateral common iliac arteries through visceral

arteries open surgical patching and subsequently perform

TEVAR after that (4). With the reduction in the stented

length of the aorta, the TIGER technique has shown that

fewer aortic stents and grafts have superior long-term CV

outcomes (3, 4, 14, 41).

Cardiac dysfunction following TEVAR/EVAR is a complex

challenging scenario for CV interventionalist (10, 29).

Therefore, it is essential to contemplate the compliance

mismatch and long-term adverse CV outcomes. The nearer to

the heart the endograft is deployed, the worse is the effect.

The way to the future is to respect the aorta as an active

organ, not a mere conduit.

The ideal design of the aortic endograft should resemble the

native aorta in terms of its flexibility and hemodynamic

impedance. The stent-graft polymers should be lightweight

but strong and resilient and capable of withstanding the

impact of normal pulsatile high flow arterial blood pressure.

However, ePTFE and polyester are synthetic polymers that are

relatively stiff and rigid compared to the native aorta (42–47).

There are no RCTs or CCTs to validate post-procedural

outcomes following EVAR/TEVAR with specific stent-graft

materials. Although not powered to demonstrate the

difference in outcomes based on endografts, the EVAR I trial

showed reduced major adverse clinical events (MACEs) with

the PTFE based GORE Excluder graft (48, 49). Furthermore,

direct comparisons are further complicated by the

heterogeneity of individual manufacturers’ differences in

endograft design and procedural deployment techniques (50–53).

Consequently, it is difficult to accurately predict the impact

of the stent-graft materials on hemodynamic alteration. PWV is

a surrogate marker that demonstrates changes in stiffness

following EVAR. Liapis et al. (30) showed that post-EVAR

with polyester endografts, there could be a threefold increase

in PWV compared to PTFE. PTFE endografts have been

reported to offer significantly stronger resistance to dilatation
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than polyester-based endografts initially, albeit this advantage

is lost over time (54). Similarly, there were lower

complications with PTFE grafts (55). However, there are no

reports of apparent long-term advantages.

PTFE-based endografts, compared to polyester, are

associated with a lower incidence of post-implantation

syndrome (PIS). PIS has been reported in up to two-thirds of

the patients following TEVAR/EVAR (56), resulting in acute

liver and/or multiple-organ failure (57–62). Ito et al. (56),

Voûte et al. (63), and Sartipy et al. (64) implicated polyester-

based endografts in the development of postoperative pyrexia,

PIS, and more extended hospital stay post-EVAR compared to

the PTFE-based endografts.

Ferreira et al. (65) suggested a probable interlink between

PIS and increased CV mortality as polyester-based endografts

increased inflammatory responses that caused endothelial

damage. Higher serum IL-8 levels support this as IL-8 has

pro-inflammatory and pro-tumoural functions. Also, IL-8

implicates the potential of polyester-based endografts;

however, it is yet to be established (66–68).

Similarly, the use of polymers in EVAR within PTFE fabric

has been controversial, and the polymer-based endografts, like

Nellix (Endologix Inc., Irvine, CA, USA) and Ovation iX

(Endologix Inc., Irvine, CA, USA) abdominal stent graft

system device, were subsequently removed from the market

(69, 70). They failed in short and mid-term follow-ups

because of an inadequate proximal fixation with continuous

pressure necrosis on the aortic sac for Nellix and aortic neck

wall for the Ovation (69, 70). Any technology that uses

embedded high inflation rings (Ovation iX) or balloons/

endobags (Nellix) must be contraindicated, as the aorta is an

organ that must be respected. Any attempt to manage it as a

mere conduit is destined to fail.

The Alto device is a newer generation of the Ovation Xi

platform, which combines PTFE limbs with the main body

with polymer-filled rings to assist with sealing the proximal

aortic neck (69). The technology is evolving, and there is

limited long-term data on performance.

There have been studies looking at the effect of Ovation on

PWV, which found no increment, but they did not compare it

to other devices (71). However, PIS with polymer-based EVAR

has the equivalent outcome as PTFE-based endografts with the

added complications of aggravated PIS due to activation of TNF

and monocytes at the site of high inflation balloons and/or rings

(63–65).
The future

We must innovate in creating intelligent, compliant, durable

endoprostheses that do not require any maintenance or follow

up. It will be manufactured by a “Bio-inspired Smart Self-

Healing Material with Autonomous and Non-Autonomous
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Nanoparticles” as a nano-carrier for self-healing, self-repairing

and self-assembly systems. These elements are vital

components for durable smart endoprostheses.

The intelligent endoprosthesis will adapt itself to prevent

tissue ingrowth into its’ microstructure, preventing rigidity

and maintaining distensibility. Therefore, the Smart

endoprosthesis will retain the ability to expand in systole and

collapse in diastole. After implantation, it gives back the

elastic recoil to the heart, creating an almost standard aortic

flow curve.

Bio-active-bio-inspired scaffolds will allow the smart

endoprosthesis to be more robust and fault-tolerant.

Transverse and longitudinal crimping that expands in systole

and contracts in diastole will mimic the elastic recoil of the

aorta. Hence it will abolish CV hemodynamic consequences

of adaptive LV hypertrophy, the wide pulse pressure, the

congestive heart failure and the renal impairment.

This paradigm shift towards utilising bio-inspired smart

self-healing materials to build smart endoprosthesis capable of

advanced self-healing during the functional lifetime of the

endograft is a disruptive technology and will augment bio-

convergence (72).

Intelligent bio-inspired endoprosthesis will lengthen

product lifetime and abolish the need for follow-up or re-

interventions. It is an intelligent green environmental friendly

endoprosthesis that requires no service—a “TESLA like

scenario”.
Conclusion

There is increasing evidence of adverse hemodynamic

alteration post-TEVAR/EVAR. Furthermore, evidence to

support the implication of specific stent-graft materials, i.e.,

PTFE vs. polyester, in adverse post-procedural outcomes

following endovascular repair of AAA is mounting.
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Interventionalists must respect the aorta as an active organ,

not a mere conduit. The best solution in the short term could

be to reduce the stented length of the aorta while in the

longer-term encouraging continuous improvement in stent-

graft materials and design. In the absence of level one

evidence, the only way forward is to plan and perform an

RCT or CCT to compare the available stent-graft materials

regarding procedural and clinical outcomes.
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