
REVIEW ARTICLE

Mitochondrial DNA copy number in human disease: the
more the better?
Roberta Filograna1,2 , Mara Mennuni1,2 , David Alsina1,2 and Nils-G€oran Larsson1,2

1 Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden

2 Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden

Correspondence

N. -G. Larsson, Division of Molecular

Metabolism, Department of Medical

Biochemistry and Biophysics, Karolinska

Institutet, 171 76 Stockholm, Sweden

E-mail: nils-goran.larsson@ki.se

(Received 22 September 2020, revised 2

November 2020, accepted 26 November

2020, available online 25 December 2020)

doi:10.1002/1873-3468.14021

Edited by Agnieszka Chacinska

Most of the genetic information has been lost or transferred to the nucleus

during the evolution of mitochondria. Nevertheless, mitochondria have

retained their own genome that is essential for oxidative phosphorylation

(OXPHOS). In mammals, a gene-dense circular mitochondrial DNA

(mtDNA) of about 16.5 kb encodes 13 proteins, which constitute only 1% of

the mitochondrial proteome. Mammalian mtDNA is present in thousands of

copies per cell and mutations often affect only a fraction of them. Most

pathogenic human mtDNA mutations are recessive and only cause OXPHOS

defects if present above a certain critical threshold. However, emerging evi-

dence strongly suggests that the proportion of mutated mtDNA copies is not

the only determinant of disease but that also the absolute copy number mat-

ters. In this review, we critically discuss current knowledge of the role of

mtDNA copy number regulation in various types of human diseases, including

mitochondrial disorders, neurodegenerative disorders and cancer, and during

ageing. We also provide an overview of new exciting therapeutic strategies to

directly manipulate mtDNA to restore OXPHOS in mitochondrial diseases.
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Mitochondrial DNA: genetics, packaging and

maintenance

Mitochondria are double-membrane organelles present

in almost all eukaryotic cells and regulate a wide vari-

ety of cellular processes, including ATP production by

oxidative phosphorylation (OXPHOS), apoptosis, b-
oxidation of fatty acids and biogenesis of iron–sulfur
clusters. Mitochondria house their own genome, the

mitochondrial DNA (mtDNA) and the molecular

machinery responsible for its maintenance and expres-

sion, that is several hundred factors controlling repli-

cation, transcription, transcript maturation and

mitochondrial translation [1]. The mammalian mtDNA

is a circular double-stranded DNA (dsDNA) molecule

present in multiple copies per cell. In the mitochon-

drial matrix, mtDNA molecules are not naked but

packaged into slightly elongated DNA–protein struc-

tures known as mitochondrial nucleoids (Fig. 1A) [2].

Superresolution microscopy techniques have revealed

that mitochondrial nucleoids have a diameter of

~ 100 nm and mainly contain one single copy of

mtDNA [3–5]. The most abundant structural compo-

nent of nucleoids is the mitochondrial transcription

factor A (TFAM) (Box 1) [6,7]. When bound to

mtDNA, the high-mobility group (HMG) box

domains of TFAM facilitate mtDNA compaction [8],

thereby regulating the accessibility of the genome to

the replication and transcription machineries [9].

In mammals, mtDNA is an intronless molecule of

~ 16.5 kb containing 37 genes encoding 13 protein

subunits of the OXPHOS system, two rRNAs (12S

and 16S) and a complete set of 22 tRNAs for mito-

chondrial translation [19,20]. Unlike the nuclear chro-

mosomes, mtDNA replication is independent of the

cell cycle and also occurs in postmitotic cells, a process

often referred to as relaxed replication [21]. A minimal

mtDNA replisome has been defined and consists of

the hexameric helicase TWINKLE, the heterotrimeric

DNA polymerase gamma (POLc) and the tetrameric

mitochondrial single-stranded DNA-binding protein

(mtSSB), in addition to the replication primer forming

mitochondrial RNA polymerase (POLRMT) [22]

(Fig. 1A). During replication of the leading strand of

mtDNA, TWINKLE moves in a 50 to 30 direction

while unwinding the dsDNA [23]. The single-stranded

DNA (ssDNA) is protected through mtSSB binding,

which also further stimulates the dsDNA unwinding

by TWINKLE and the DNA synthesis by POLc
[23,24]. The RNA primers required for the initiation

of the synthesis of both DNA strands are produced by

POLRMT [25]. It has been recognised for more than

45 years that replication of mammalian mtDNA

occurs asymmetrically [26–28]. The replication process

is understood in great detail, although not completely,

and depends on dedicated origins on each DNA strand,

the leading (heavy-) and the lagging (light-) strand ori-

gin of replication (OH and OL), respectively [1,29].

According to this strand-displacement mode, the repli-

cation of the leading strand initiates at OH and pro-

ceeds unidirectionally until about two-thirds of the

genome has been replicated. At this point, the replica-

tion of the leading strand proceeds beyond OL, which is

activated to form a stem–loop structure [24,30] that

recruits POLRMT for RNA primer synthesis to initiate

the replication of the lagging strand [31]. The synthesis

of the two strands then proceeds continuously until two

full-length, dsDNA molecules are formed. To complete

mtDNA replication, the mitochondrial genome mainte-

nance exonuclease 1 and other nucleases help forming

ligatable DNA ends and the concatenated newly repli-

cated mtDNA molecules are released from each other

by the action of topoisomerase 3a [32].

Given that mtDNA expression is a prerequisite for

biogenesis of the OXPHOS system [33], mtDNA con-

tent in cells and tissues must be adjusted according to

metabolic needs [34]. Therefore, mtDNA levels are tis-

sue- and developmental-stage-specific and finely regu-

lated by a balance between replication and turnover.

Studies on human samples have revealed that mtDNA

copy number per cell can vary by several orders of

magnitude, ranging from ~ 1 9 105 mtDNA copies in

oocytes [35], ~ 4–6 9 103 in heart to 0.5–2 9 103 in

lungs, liver and kidney [36]. Consistent with its key

role in packaging mtDNA into nucleoids, TFAM also

serves as a key regulator of mtDNA copy number

(Box 1). Heterozygous disruption of Tfam causes a

decrease in mtDNA levels of ~ 50% [15,16], whereas a

moderate TFAM overexpression increases the amount

of mtDNA by ~ 50–100% [16–18].
Our knowledge of mtDNA replication and mainte-

nance has dramatically increased in recent years, but

how the cellular mtDNA copy number is adjusted to

and maintained at a certain level is currently not com-

pletely understood. Several models, based on ATP

requirements, nucleotide availability and replication ori-

gin regulation, have been proposed to control mtDNA

content [37]. In addition, genetic screens in Saccha-

romyces cerevisiae have been performed to identify

novel regulators of mtDNA levels [38,39]. Unfortu-

nately, these studies have provided little new mechanis-

tic insights as loss of mtDNA is a common secondary

effect of mitochondrial dysfunction in budding yeast.

Genetic studies in humans have identified a region on

chromosome 10, which contains TFAM and other

genes, to have a notable impact on mtDNA levels [40].
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Causes and consequences of mtDNA mutations

Mutations of mtDNA can in principle be generated

either by spontaneous errors during DNA replication

or by incorrect repair of damaged DNA bases. In spite

of being very popular, the free radical theory of age-

ing, which proposes that oxidative stress is the main

cause for mtDNA mutations [41,42], is much ques-

tioned. In fact, sequence analyses of mutations in a

large number of mtDNA genomes and experimental

studies of mice argue that the vast majority of mtDNA

mutations are the result of spontaneous replication

errors introduced by POLc during mtDNA synthesis

[43–48]. The explanation for the paucity of damage-

induced mtDNA mutations may reside in the com-

pacted nature of the mitochondrial nucleoid, which

provides a protected environment that makes the

mtDNA less accessible to chemical damage, including

oxidation.

Pathogenic mtDNA mutations have been identified

in mitochondrial tRNA, rRNA and protein-coding

genes, and they invariably compromise mitochondrial

gene expression causing various degrees of OXPHOS

deficiency. Due to the multicopy nature of the mito-

chondrial genome, mtDNA mutations may be present

either in all (homoplasmy) or only in a subset of all

(heteroplasmy) copies of mtDNA. Many severe

Fig. 1. Schematic representation of mtDNA maintenance, packaging and genetics. (A) mtDNA nucleoids and the replisome. mtDNA is

present in multiple copies within the cell. It is compacted by TFAM into structures known as nucleoids. Mitochondrial nucleoids can be

found in a compacted or relaxed state depending on the local TFAM concentration. In the relaxed state, mtDNA is accessible for replication

by the mitochondrial replisome which is formed by the mitochondrial RNA polymerase POLRMT, the hexameric DNA helicase TWINKLE,

the tetrameric mtSSB and the mtDNA polymerase gamma POLc. POLc is a heterotrimer formed by a catalytic subunit with DNA

polymerase and 30-50 exonuclease activities (encoded by POLGA), and by two accessory subunits (encoded by POLGB) required for the tight

DNA-binding and processive DNA synthesis. During replication, TWINKLE unwinds and proceeds on the DNA in a 5’ to 3’ direction, and the

single-stranded DNA generated by TWINKLE activity is protected by the mtSSB binding. The RNA primers for replication initiation are

generated by POLRMT. (B) The concept of heteroplasmy. Mutations affecting the mtDNA can coexist with the wild-type molecules, a

condition known as heteroplasmy. mtDNA mutations are tolerated until they exceed a certain level (threshold). Therefore, defects in the

OXPHOS system will manifest only when the proportion of mutated mtDNA molecules exceeds the biochemical threshold, which is known

to be tissue- and mutation-specific.
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mtDNA mutations cannot be tolerated in the homo-

plasmic state and are therefore only found in the

heteroplasmic state in patients. Heteroplasmic patho-

genic mtDNA mutations are typically functionally

recessive [49], meaning that they cause respiratory-

chain deficiency only when present above a certain

threshold level [50] (Fig. 1B). This implies that only

cells containing levels of mutated mtDNA that exceeds

a critical threshold will develop respiratory-chain dys-

function, whereas adjacent cells with a lower mutation

load can sustain normal respiratory-chain function.

The threshold level is highly dependent on the affected

tissue and the type of mtDNA mutation present. For

single large deletions of mtDNA, the threshold is

~ 50–60% [50], whereas some point mutations in

tRNA genes have thresholds exceeding 90% mutated

mtDNA [51–53]. During the life of an individual, the

level of heteroplasmy can shift either up or down due

to mitotic segregation, which is a consequence of

relaxed replication and random partitioning of mito-

chondria between daughter cells. Furthermore, delete-

rious mtDNA alleles may be actively eliminated in

proliferating tissues by purifying selection, which has

been seen in blood for some types of mtDNA muta-

tions [54–56].
Besides being the direct cause of primary mitochon-

drial diseases, typically characterised by severe mito-

chondrial impairment in multiple tissues [57], mtDNA

mutations have also been implicated in the pathophysi-

ology of common age-associated human diseases [57–
61] and in the naturally occurring ageing process [62].

It is well established that point mutations in tRNA

genes or single large deletions of mtDNA lead to func-

tional impairment or lack of one or several tRNAs.

However, these types of pathogenic mtDNA mutations

have no dominant effects and high levels of mutated

mtDNA can therefore be tolerated. The recessive nat-

ure of most human pathogenic mtDNA mutations

leads to a deficiency of wild-type gene products, which,

in turn, impairs OXPHOS and causes the disease phe-

notypes.

Almost 25 years ago, Attardi and colleagues

hypothesised that both the fraction of wild-type

mtDNA and the mtDNA copy number play a role in

the phenotypic manifestations of mtDNA mutations.

The authors demonstrated a correlation between

mtDNA copy number and oxygen consumption rate

and also experimentally proved that low levels of wild-

type mtDNA can protect cybrid cell lines from the

deleterious effects of a pathogenic mtDNA mutation

in the tRNALeu gene [63]. In recent years, increasing

evidence based on human correlative data and experi-

mental mouse genetics has confirmed that high abso-

lute levels of wild-type mtDNA genomes indeed may

counteract the consequences of pathogenic mtDNA

mutations [64–67].
In this review, we provide a comprehensive overview

of the current knowledge on the contribution of

mtDNA copy number regulation to clinical manifesta-

tions of mitochondrial disorders, neurodegenerative

Box 1. Many faces of TFAM: one protein with multi-

ple functions

TFAM is a highly abundant mitochondrial protein,

present in about 1000 copies per mtDNA molecule or

1 TFAM molecule per 15–20 bp of mtDNA [5], and it

is essential for mtDNA transcription initiation,

nucleoid formation and mtDNA maintenance.

TFAM is a member of the HMG-box protein

superfamily, contains two HMG-box domains,

HMGA and HMGB, separated by a linker, and a

charged C-terminal tail [10]. The crystal structures of

TFAM have shown that each of the two HMG boxes

bend the DNA nearly 90° inducing U turn in the

DNA minor groove and bending it towards the major

groove [8,11].

TFAM modulates the interactions with mtDNA

thanks to a fine-tuning of its DNA-binding function.

TFAM can bind, unwind and bend DNA without

sequence specificity. It coats and packages individual

mtDNA molecules to form mitochondrial nucleoids.

In addition, TFAM can also bind DNA in a

sequence-specific manner to facilitate unwinding of the

promoter regions during transcription initiation [12].

Notably, the C-terminal tail of TFAM has been

shown to prime the interaction with the transcription

machinery [13], whereas the HMGB domain is respon-

sible for the interaction with POLRMT to anchor it

to the promoter [14].

TFAM is also essential for mtDNA maintenance

and homozygous disruption of Tfam is embryonically

lethal in the mouse [15]. Several genetic models have

demonstrated a direct link between TFAM protein

levels and mtDNA copy number in vitro and in vivo.

Heterozygous ablation of Tfam causes ~ 50% decrease

in mtDNA levels [15,16], whereas the overexpression

of Tfam results in ~ 50% increase of mtDNA copy

number [16–18]. TFAM is therefore a multifunctional

protein, which is necessary for mtDNA genome main-

tenance and expression. To date, our knowledge

related to the regulation of TFAM activity in different

processes remains very limited.
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diseases, cancer and ageing. We critically assess avail-

able data on mtDNA copy number regulation and

experimental challenges. Finally, we discuss the ratio-

nale and the applications of current therapeutic strate-

gies to improve mitochondrial function.

mtDNA copy number in human
disease

Quantification of mtDNA copy number

To understand the implication of mtDNA variations

in human diseases, mtDNA copy number must be

accurately assessed to avoid biases that confound

interpretation of results.

Measurements of mtDNA levels can be performed

with a variety of techniques. For a long time, southern

blot (SB) hybridisation was used as the gold standard

method to assess mtDNA levels and integrity in

patient samples [68–70] and in model organisms [71–
74]. Despite being highly reliable in assessing mtDNA

content, SB techniques are time-consuming, only semi-

quantitative and require a relatively large amount of

DNA, which combined represent a major disadvantage

when studying human tissues.

Fluorescent in situ hybridisation approaches have

also been employed to spatially visualise mtDNA con-

tent with single-cell resolution but have proven to be

only partially informative [75–77]. In fact, this multi-

step protocol can be quite laborious and it provides

only a rough estimate of changes in mtDNA amount.

The most popular current standard techniques to

measure mtDNA copies are PCR-based methods. Due

to its simplicity, quantitative real-time PCR (qPCR) is

the most widely used approach to assess relative or

absolute mtDNA levels. However, the large majority

of protocols assess the relative mtDNA copy number

as a ratio between mtDNA levels and levels of a

selected nuclear gene, which makes comparison

between studies very difficult. It is also possible to

engage qPCR-based assays to determine the absolute

mtDNA copy number by using either a standard curve

based on the mtDNA region of interest inserted into a

reference plasmid [78,79] or droplet digital PCR

(ddPCR). Although the limited effective range of the

ddPCR method might affect precision when measuring

high copy number, this technology can provide a rig-

orous quantification of mtDNA copies without the use

of external standards [80–82].
Recent studies have shown that the quantification of

mtDNA copy number can be inferred from next-gener-

ation sequencing (NGS) data, including whole-exome

sequencing (WES) and whole-genome sequencing

(WGS) [83–86]. The output from NGS datasets relies

on the ratio of sequencing reads from nuclear DNA

and mtDNA and allows analysis of hundreds of thou-

sands of available data sets shared by research consor-

tia. Although a series of normalisations are needed to

correct for counts, ploidy, purity and batch biases

[36,87,88], the NGS technology enables high-through-

put, high-sensitivity and accurate assessment of

mtDNA levels. Thus, WES/WGS approaches will

likely be increasingly employed as gold standard tools

to assess mtDNA content and heteroplasmy levels in

the future.

mtDNA copy number in mitochondrial diseases

Mitochondrial diseases are a group of heterogenous

hereditary disorders characterised by OXPHOS defi-

ciency. These disorders can affect different cell types

and organs, and can therefore cause a wide range of

symptoms. Mitochondrial diseases have been classified

according to their clinical manifestations and can be

caused either by mutations in nuclear genes, leading to

reduced mtDNA expression, or by primary mtDNA

mutations directly impairing the function or abun-

dance of mtDNA-encoded gene products [59,60].

mtDNA depletion syndromes (MDSs) [89] are auto-

somal recessive disorders characterised by a strong tis-

sue-specific reduction in mtDNA levels due to

mutations in genes involved in various mtDNA mainte-

nance processes, ranging from mitochondrial nucleotide

metabolism, mtDNA replication, mitochondrial dynam-

ics and quality control (Table 1). Thus, MDSs establish

a causal and direct link between low mtDNA content

and pathological conditions. However, the importance

of mtDNA copy number in the pathophysiology of

other mitochondrial diseases often remains enigmatic.

The POLGA gene, encoding the catalytic subunit of

mitochondrial polymerase POLc, is one of the several

nuclear genes associated with MDS. However, the over

300 mutations identified so far in the POLGA gene

can cause a variety of mtDNA defects leading to dis-

parate symptoms, disease severity and age of onset of

disease (https://tools.niehs.nih.gov/polg/) [90]. Patients

affected by POLGA-related disorders can manifest

either severe reduction in mtDNA copy number or

accumulation of mtDNA mutations and deletions with

no effect on mtDNA levels [91]. Even though the crys-

tal structure of POLc has shed some light on how dif-

ferent mutations can impact enzyme activity and

replication fidelity [92], the relation between genotype

and phenotype is not always straightforward. The

strong phenotypic variability in POLGA patients can

even occur between subjects of the same family [93].
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Interestingly, a mutation markedly impairing the proof-

reading activity of DNA polymerase gamma, subunit A

(POLGA) in mice resulted in numerous mtDNA muta-

tions, but had no impact on copy number [94].

Homoplasmic and heteroplasmic pathogenic mtDNA

mutations are responsible for diverse mitochondrial syn-

dromes, including mitochondrial encephalopathy, lactic

acidosis and stroke-like episodes (MELAS), Leber’s

hereditary optic neuropathy (LHON), myoclonus epilepsy

with ragged-red fibres (MERRF), Pearson’s syndrome or

Kearns–Sayre syndrome (KSS). mtDNA copy number

has been assessed only in small cohorts of patients

affected by either Pearson’s or KSS, caused by single

large heteroplasmic mtDNA deletions. The results of

these investigations showed that most patients presented

an increased mtDNA copy number compared with the

control individuals, although mtDNA levels did not cor-

relate with the size or position of the deletion [95].

The copy number variations in patients with mtDNA

point mutations have been more extensively investi-

gated. A recent study of a large group of MELAS

patients carrying the heteroplasmic m.3243A>G muta-

tion showed that high mtDNA copy number and low

heteroplasmy levels correlated with less severe disease

[66]. Other studies with smaller patient cohorts reported

that MELAS and MERRF patients with moderately

high mtDNA copy number showed milder phenotypes

[96]. Also, in LHON patients, that mostly carry homo-

plasmic mutations, mtDNA copy number was reported

to play a role in the penetrance of the disease, as the

asymptomatic carriers of the m.11778G>A or

m.3460G>A mutations had higher mtDNA copy num-

ber than visually impaired patients [65,97,98].

The data discussed above and additional data sum-

marised in Table 1 strongly suggest a direct relation

between the absolute mtDNA copy number and mito-

chondrial diseases onset and progression. Particularly

intriguing is the idea that an increase in the absolute

mtDNA copy number could be a compensatory mecha-

nism aimed at sustaining OXHPOS activity. This

endogenous upregulation of mtDNA content might be

able to efficiently overcome the bioenergetic defects

caused by some mtDNA mutations. In a well-docu-

mented mouse model harbouring a pathogenic hetero-

plasmic tRNA gene mutation in mtDNA [99], affected

animals spontaneously upregulate mtDNA copy number

in several tissues, which may delay onset of disease man-

ifestations [64].

mtDNA levels in ageing and age-related

neurodegenerative disorders

Ageing is a biological process characterised by the

slow and progressive decline of the physiological

Table 1. mtDNA copy number variation among mitochondrial diseases. Top panel: mitochondrial diseases caused by mutations in nuclear

genes. n.a. not available in the original work. Bottom panel: diseases caused by primary mtDNA mutations.

Disease Gene (nuclear) Sample type mtDNA levels Quantification method Reference

MDS ANT1 Skeletal muscle Down qPCR [232]

TK2 Skeletal muscle Down SB; qPCR [91,233]

DGUOK Liver Down SB; qPCR [91,234]

TYMP Gastrointestinal tract Down qPCR [235]

MPV17 Liver Down SB; qPCR [91,236]

SUCLA2 Skeletal muscle Down qPCR [91,237]

SUCLG1 Liver/Skeletal muscle Down qPCR [91,238]

MFN2 Skeletal muscle Unchanged/down n.a [239,240]

FBXL4 Skeletal muscle Down qPCR [241,242]

POLGA Liver/blood Unchanged/ down qPCR [91,243]

POLGB Liver/skeletal muscle/blood Down qPCR [244]

TWNK Liver Down qPCR [245,246]

mtSSB Muscle/blood/kidney Down qPCR [247]

Disease mtDNA mutation Sample type mtDNA levels Quantification method Reference

Pearson’s syndrome Deletion Blood Up qPCR [95]

KSS Deletion Blood/muscle Up qPCR [95]

MELAS m.3243A>G Leucocytes Up/unchanged/downa qPCR [96]

MERRF m.8344A>G Leucocytes Up/unchanged/downa qPCR [96]

LHON m.11778G>A Peripheral blood cells Up qPCR [65]

LHON m.11778G>A Blood Up/unchanged qPCR [97,98]

LHON m.3460G>A Blood Up/unchanged qPCR [97,98]

aCopy number found to be increased in younger patients but unchanged or even decreased in older patients.
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functions of an organism, which ultimately determines

multimorbidity and lethality. This process includes a

decay of mitochondrial function, concomitant with

alterations in mitochondrial morphology [100,101],

mitochondrial content (number and protein levels)

[102] and OXPHOS capacity [103]. As previously men-

tioned, pathogenic mtDNA mutations, both large dele-

tions and point mutations, have been identified in

postmitotic and proliferating tissues of aged individu-

als [62,104–106]. There is experimental evidence sug-

gesting that the somatic mtDNA mutations seen in

ageing humans and other mammals have the capacity

to cause at least some ageing phenotypes. In mice,

proofreading-deficient POLc caused a progressive

accumulation of mtDNA mutations and a premature

ageing syndrome with reduced lifespan, decreased fer-

tility, anaemia, hair greying, hair loss, hearing impair-

ment and stem cell dysfunction [94,107]. Interestingly,

increasing evidence suggests that somatic mtDNA

mutations may contribute to age-related neurodegener-

ative disorders, such as Parkinson’s disease (PD) and

Alzheimer’s disease (AD). The accumulation of

mtDNA mutations was observed in the Substantia

nigra (SN) of PD patients [108] and in frontal cortex

and hippocampus of AD patients [109]. Furthermore,

in these brain regions the presence of high levels of

mtDNA point mutations or deletions correlated with

severe mitochondrial biochemical defects, for example

in complex I [110] or complex IV [111].

Correlative studies in humans with age-associated

degenerative disease and ageing have thus strongly

implicated mtDNA mutations and OXPHOS dysfunc-

tion in these conditions, but a possible role for

mtDNA copy number is less clear. Multiple studies

have assessed the mtDNA content in tissues of individ-

uals at different ages (Table 2). The majority of these

investigations showed a reduction in mtDNA copy

number in aged individuals. For instance, mtDNA

levels measured in lymphocytes from over 2000 Sar-

dinians were found modestly, but significantly,

decreased with age [112]. A more pronounced reduc-

tion in mtDNA copy number was found in blood sam-

ples and was first observed in individuals in their 50s.

The decline in mtDNA levels was even more dramatic

in older subjects [113,114], and a loss of a few per cent

of all copies per decade has been estimated [115].

Remarkably, in the old group (> 58 years of age), low

mtDNA copy number in peripheral blood was associ-

ated with high mortality and poor health, including a

decline in cognitive and physical performance [114].

Studies performed in long-lived families comprising

nonagenarian and centenarian individuals have often

shown puzzling and contradictory outcomes. mtDNA

copy number in blood samples was reported to be

clearly reduced in individuals between 50 and 70 years

of age, whereas mtDNA levels were either lower [116]

or higher [117] in nonagenarians and centenarians in

comparison with middle-aged controls. Therefore,

these results do not clarify whether low mtDNA copy

number correlates with a negative or positive impact

on longevity.

A series of experiments performed on samples other

than blood and lymphocytes also yielded mixed

results. For instance, age-related reduction in mtDNA

levels were not observed in skeletal muscle and heart

[118,119], whereas a more recent study reported

decreased mtDNA copy number in skeletal muscle and

increased copy number in liver of aged subjects [120].

Significant differences in mtDNA copy number have

been reported across different brain regions, and these

variations were more pronounced in patients affected

by neurodegenerative disorders. For instance, no alter-

ations in mtDNA levels were identified in samples

from caudate nucleus, frontal lobe and cerebellar cor-

tex of aged individuals [118,121]. Interestingly,

microdissected dopaminergic (DA) neurons from SN

of healthy aged subjects contained increased levels of

mtDNA deletions and increased total mtDNA levels

[121]. In contrast, DA neurons of PD patients had no

increase in total mtDNA copy number despite having

increased levels of deleted mtDNA [121]. It is possible

that this selective depletion of functional wild-type

mtDNA molecules caused a bioenergetic deficiency in

DA neurons of PD patients [121]. Other studies that

analysed both total SN homogenates and microdis-

sected DA neurons found a general reduction in

mtDNA content in PD patients [122,123]. Notably,

mtDNA levels were unaltered in brain regions that

were only mildly affected or not compromised in PD

patients [123,124].

Measurements of mtDNA levels were also performed

in brains of subjects affected by AD. These investiga-

tions revealed that mtDNA levels were decreased by

30–50% in the frontal cortex of AD patients when com-

pared to controls [109,125]. This mtDNA depletion was

also present in microdissected pyramidal neurons from

the hippocampus and was concomitant with a disrup-

tion in mitochondrial biogenesis signalling pathways

[126]. The correlation between reduction in mtDNA

levels and neurodegeneration in AD has been further

supported by a comprehensive in-depth analysis of

mtDNA sequence variation and abundance in over

1000 human brains [124].

The need for novel diagnostic and prognostic

biomarkers for PD and AD has promoted significant

research efforts to assess mtDNA copy number in

982 FEBS Letters 595 (2021) 976–1002 ª 2020 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

mtDNA copy number in human disease and ageing R. Filograna et al.



peripheral blood and cerebrospinal fluid (CSF). In

blood samples from PD patients, mtDNA levels were

decreased when compared to healthy controls

[123,127]. Lower mtDNA copy number was more fre-

quently observed in elderly PD subjects, suggesting

that mtDNA content might even have a prognostic rel-

evance in PD progression [127]. Different results were

found in AD subjects, where mtDNA levels were

unchanged [125,128] in spite of altered mitochondrial

gene expression [128]. Analyses performed in CSF,

which often mirrors the pathological changes in brain

metabolism, revealed a reduction in cell-free mtDNA

in both AD and PD samples, suggesting that the levels

of cell-free mtDNA may be used as biomarker for the

early detection of both of these neurodegenerative dis-

eases [129,130].

The majority of the data discussed here suggest that

the decline in mitochondrial function observed in age-

related disorders and ageing correlates with a progres-

sive reduction in mtDNA copy number. Even if it is

completely plausible that a gradual loss of functional

mtDNA may have harmful effects on the brain, the

results of these investigations might be deeply biased

by the quality and the composition of the specimens

(see further discussion below). Therefore, the possible

existence of a causal relationship between mtDNA

levels and age-related disorders needs further experi-

mental validation.

mtDNA variation in human cancer

Historically, the existence of a relationship between

mitochondrial metabolism and cancer was first pro-

posed by Otto Warburg in the early 1920s based on

his observation that cancer cells can fulfil their ener-

getic needs almost exclusively through aerobic glycoly-

sis [131]. Warburg postulated that an impairment in

mitochondrial respiration could drive tumorigenesis.

This view became a milestone in cancer research but

gradually faded away when the focus was shifted to

oncogenes and the regulation of the cell cycle. How-

ever, during the last decades new evidence suggests

important roles for mitochondria in cancer initiation

and progression [132]. A recent in vivo characterisation

of metabolic needs in tumours showed for instance

that the conversion of pyruvate to lactate (aerobic gly-

colysis) was not essential for melanoma tumour

growth [133]. Similarly, lung adenocarcinomas dis-

played high dependency on substrates for glucose oxi-

dation and the tricarboxylic acid cycle to harvest

Table 2. mtDNA copy number variation in ageing and neurodegenerative disorders.

Disease Sample type mtDNA levels Quantification method References

Ageing Lymphocytes Down WGS [112]

Blood Down qPCR; qPCR; WGS; qPCR; qPCR [113–117]

Heart Unchanged qPCR; SB [118,119]

Skeletal muscle Unchanged qPCR; SB [118,119]

Skeletal muscle Down NGS and ddPCR [120]

Liver Up NGS and ddPCR [120]

Caudate nucleus Unchanged SB [118]

Frontal lobe cortex Unchanged SB [118]

Cerebellar cortex Unchanged SB [118]

SNa Up qPCR [121]

PD SNa Down qPCR; qPCR [121,122]

Cerebellum Unchanged WES [124]

Cerebellar cortex Unchanged WES [124]

Frontal cortex Unchanged qPCR [123]

SN Down qPCR [123]

Blood Down qPCR; qPCR [123,127]

CSF Down qPCR [130]

AD Frontal cortex Down qPCR [109]

Cerebellum Unchanged qPCR [125]

Cerebellum Down WES [124]

Hippocampus Unchanged qPCR [125]

Hippocampusa Down qPCR [126]

Cerebellar cortex Down WES [124]

Blood Unchanged qPCR [125,128]

CSF Down qPCR [129]

aAnalyses were performed on microdissected neurons from these specific brain regions.
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energy [134] and were also reported to retain a high

mitochondrial membrane potential [135]. In contrast,

in the intestine, the ablation of the mitochondrial

pyruvate carrier was sufficient to initiate tumour for-

mation [136]. Therefore, the extent of the contribution

of mitochondrial metabolism to tumour onset and pro-

gression is heterogeneous and it is likely to depend on

both the cancer type and the tumour stage.

Mutations in the mtDNA can be used as a measure

of mitochondrial fitness, and the accumulation of

mtDNA mutations is well known to occur in multiple

cancers [137,138]. Several groups have characterised

the mutational pattern of tumours by exploiting the

recent high availability of NGS and WGS data [139–
142]. Although mutations in mtDNA seem to accu-

mulate in virtually all cancer types tested [139,142],

the pathophysiological relevance, that is whether

mtDNA mutations are causative or simply by-prod-

ucts generated by rapid mtDNA replication in fast-di-

viding cancer cells, is typically unclear. Mathematical

models suggest that mtDNA mutations may accumu-

late due to the expansion of pre-existing heteroplas-

mic mutations or polymorphisms and that these

undergo passive clonal expansion during the multiple

cell divisions in tumours [143]. There are also other

arguments against a positive role for mtDNA muta-

tions in tumour development because mtDNA muta-

tions that truncate proteins are counterselected in the

majority of tumours [142,144,145], with the exception

of kidney, and colorectal and thyroid cancers [142].

Interestingly, in these tumours the levels of mtDNA

were found upregulated, suggesting a compensatory

mechanism to sustain mitochondrial function [142].

The study also assessed the mutational landscape of

over 2000 cancer patients and identified a strong

strand bias for mtDNA mutations, which strongly

argues for a replication-related mechanism in the gen-

eration of mutations [142]. A likely scenario for

mtDNA mutations accumulation in tumours is that

pre-existing mutations or mutations created by POLc
replication errors can clonally expand to high levels

in fast-dividing cancer cells and become fixed in

tumour subpopulations. Oncocytomas may represent

an interesting confirmation of this hypothesis, as they

are characterised by high levels of mtDNA mutations

that result in a strong OXPHOS dysfunction and a

compensatory increase in mitochondrial mass.

Although pre-existing mtDNA mutations may drive

oncocytoma formation, these tumours are typically

benign lesions, characterised by low-invasiveness and

a non-aggressive phenotype [146–149]. Mitochondrial

dysfunction might represent a major boundary to

cancer progression, but it is also possible that the

accumulation of mtDNA mutations in some types of

cancer provides a selective advantage to transformed

cells and that mtDNA mutations thereby directly

contribute to cancer development. Along these lines,

a recent report has shown that metabolic alterations

induced by mtDNA mutations may facilitate tumour

formation in colon [150].

Besides the mutation load, mtDNA abundance is an

important indicator of the reliance of a cell on

OXPHOS. However, not many groups have looked at

these two parameters at the same time and most stud-

ies only explore one of the two aspects. The levels of

mtDNA have been associated with cancer, for either

diagnostic or prognostic purposes. For diagnostic pur-

poses, many attempts were directed towards finding a

correlation between mtDNA copy number and disease

onset, pursuing the idea that mtDNA levels in blood

could be a marker for cancer risk. High mtDNA levels

in blood were reported to correlate with an increased

risk of developing lymphomas [151], breast [152,153],

skin [154], lung [155] and pancreatic tumours [156],

whereas other studies reported a protective effect of

high mtDNA copy number against bone, kidney and

other cancer types [157]. The risk of developing col-

orectal carcinoma was associated with both higher

[158] or lower [159] amount of mtDNA in peripheral

blood.

The levels of mtDNA have also been assessed as a

prognostic factor by comparing matched normal and

tumour tissue samples in several cancer types. The

data from such studies, summarised in Table 3, are

highly heterogeneous, and the reports suggest that

both increased and decreased mtDNA levels correlate

with disease severity. Colorectal carcinoma progression

was associated with both an increase [160,161] and a

decrease [162–164] in mtDNA copy number. Similar

findings were reported for lung, and gastric and renal

cell carcinomas, where some research groups found a

correlation between high mtDNA levels and disease

severity [142,165,166], whereas some earlier studies

found the inverse relationship [163]. Data addressing

multiple cancer types are not really clarifying the situa-

tion, as some tumours seem to upregulate mtDNA

levels, including lymphomas, pancreatic, thyroid [142]

and prostate cancers [141,142] and renal oncocytomas

[147], whereas tumours affecting the breast [166–169],
the brain [170], bones [171], the oral tract [166] and

the liver [142,166,172] have been associated with a

reduction in mtDNA levels.

Generally, it is important to be careful when com-

paring data from different sources as it is possible that

at least part of the above discrepancies could be

explained by methodological and study design biases
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(see section below). Moreover, the composition of the

samples from different tumour types and stages could

well explain the differences reported by various

research groups. In this respect, recent analyses of

thousands of available NGS/WGS data from cancer

patients with specific focus on mtDNA may unravel

more robust correlations between mtDNA and onset

and progression of different tumour types. For future

studies along these lines, it is of crucial importance to

simultaneously assess both mtDNA mutations and

mtDNA copy number and to associate these parame-

ters with assessment of mtDNA expression and

OXPHOS capacity.

The challenges of the precise quantification of

mtDNA in humans

An extensive review of the literature finds many

attempts aimed at understanding the role of mtDNA

copy number in human disease. These studies are cor-

relative and descriptive in their nature and often lim-

ited by methodology, sample selection and study

design. Herein, we discuss some potential issues that

must be considered when interpreting the available lit-

erature and when designing novel studies.

Firstly, methodological bias can contribute to the

variability emerging among studies. The accuracy of

the measurements can be much influenced by DNA

Table 3. mtDNA copy number variation in cancer.

Tissue affected Sample type MtDNA levels Cancer risk Quantification method References

Lymphocytes Peripheral blood lymphocytes Up Increased risk Meta-analysis of literature search (qPCR) [151]

Bone Peripheral blood lymphocytes Up Decreased risk Meta-analysis of literature search (qPCR) [151]

Brain (glioma) Blood Up Increased risk qPCR [248]

Breast Blood Up Increased risk qPCR; qPCR [152,153]

Colon/rectum Peripheral blood lymphocytes Down Increased risk qPCR [159]

Peripheral blood lymphocytes Up; down Increased risk qPCR [158]

Kidney Peripheral blood lymphocytes Down Increased risk qPCR [157]

Lung Blood Up Increased risk qPCR [155]

Pancreas Blood Up Increased risk qPCR [156]

Skin Blood Up Increased risk qPCR [154]

Tissue affected Sample type (matched)

mtDNA

levels

Disease

severity Quantification method References

Bladder Bladder Down Increased WGS and WES [166]

Bone Ewing sarcoma Down Increased qPCR [171]

Brain Glioma Down Increased qPCR [170]

Breast Primary breast tumours Down Increased WGS; OtheraqPCR; WGS and

WES

[166–169]

Colon/rectum Colorectal carcinoma Up Increased qPCR; qPCR; qPCR [160–162]

Colorectal adenoma Up Increased qPCR [164,249]

Advanced colorectal carcinoma Down Increased qPCR; qPCR [163,164]

Head and neck Squamous cells carcinoma Down Increased WGS and WES [166]

Kidney Chromophobe renal cell carcinoma Up Increased WGS and WES [165]

Renal carcinoma (TCGA) Down Decreased WGS; WGS and WES [142,166]

Renal oncocytomas Up Decreasedc WES; qPCR [147]

Liver Hepatocellular carcinoma Down Increased qPCR; WGS and WES; WGS [142,166,172]

Lung Non-small cell lung cancer Down Increased Otherb; qPCR [249,250]

Adenocarcinoma, small cells lung

cancer

Up Increased qPCR; WGS and WES; WGS [142,166,251]

Lymphocytes Lymphocytic leukaemia Up Increased WGS [142]

Oral / digestive

tract

Oesophagus Down Increased WGS and WES [166]

Stomach Down Increased Otherb [252]

Up Increased qPCR [253]

Pancreas Pancreas tumour (endocrine) Up Increased WGS [142]

Prostate Primary prostate cancer Up Increased qPCR; WGS [141,142]

Thyroid Adenocarcinoma Up Increased WGS [142]

aMicroarray data.; bCompetitive PCR method.; cmtDNA presents high levels of mutations.
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extraction methods. Traditional approaches based

either on organic solvent extraction (phenol–phenol–
chloroform–isoamyl alcohol) or on silica-based solid-

phase columns (DNA extraction kits) can influence

the mtDNA:nuclear DNA ratio and can affect the

experimental outcomes [84,173]. Likewise, different

quantification methods, as discussed above in the sec-

tion quantification of mtDNA copy number, may

well account for differences between studies, labora-

tories or even among batches in the same study. The

NGS technologies allow sensitive and high-through-

put assessment of mtDNA levels in big data sets;

thus, they will likely be more and more employed in

the near future to overcome some of the methodolog-

ical limitations.

Secondly, specimen heterogeneity represents a major

constraint to reproducibility, as it is well known that

mtDNA copy number often varies significantly

between different cell types, and therefore, the cellular

composition of the investigated tissue should be a

main concern. For instance, the use of blood samples

has obvious advantages, including the minimally inva-

sive sampling procedure and the low cost. However,

mtDNA levels in blood do not necessarily reflect levels

in other tissues and the measurements can be strongly

biased by differences in blood cell composition. Plate-

lets are known to have high mtDNA content com-

pared with white blood cells, and they also lack the

nuclear genome. As consequence, mtDNA content can

be overestimated in blood samples where platelets are

more abundant, and mtDNA levels should be hence

normalised to the platelets/leucocyte ratio [174,175].

Thirdly, the cell-type composition of a given tissue

can change due to pathology or ageing. For example,

in age-associated forms of neurodegeneration, the loss

of certain neuronal populations is accompanied by reac-

tive gliosis [176]. Thus, neurons will likely be underrep-

resented in tissue homogenates from patients with

neurodegeneration. The naturally occurring ageing pro-

cess can also severely influence tissue composition due

to fibrotic remodelling of the heart or nerve cell loss in

the brain. Similar problems are evident in cancer,

because tumour tissues typically contain multiple cell

types besides the cancer cells, for example fibroblasts

and endothelial cells. To circumnavigate the heterogene-

ity bias, significant attempts to isolate specific cell types

have been made with a certain degree of success by

using laser-capture microdissection in defined organs.

However, the availability and time engagement of such

technology remain serious limiting factors for its appli-

cation to a large number of samples.

Finally, it is important to point out that the study

design has a strong impact on reliability. Genetic and

environmental factors, such as age, gender and life-

style, must be considered when selecting the study

cohort. For instance, gender differences are important

and it has been reported that females have higher

mtDNA content than males [112,116]. Although most

studies aim to use matched control groups, this is not

always trivial, as in the case of studies addressing age-

ing, where controls are by definition nonaged individu-

als. Similar caution should be used for individuals

undergoing long-term drug treatments, for example

chemotherapy, which may well influence mtDNA

levels. Likewise, the lifestyles should be taken into

account, as regular endurance training is known to

induce an adaptive metabolic response in skeletal mus-

cle that leads to a general increase in mitochondrial

mass and mtDNA [177,178]. Finally, another impor-

tant limitation of many clinical studies is that they are

by necessity mostly retrospective and do not include a

longitudinal follow-up. Hence, their outcomes are cor-

relative and must be validated by experimental investi-

gations in animal models in order to establish cause-

and-effect relationships.

Therapeutic approaches exploiting the
modulation of mitochondrial fitness

As discussed above, there is good evidence that the

absolute mtDNA levels can be a critical factor in

human pathology and ageing. This has led to the

development of strategies that directly or indirectly

manipulate mtDNA levels to ameliorate or prevent

disease progression. In essence, two strategies have

been engaged to increase OXPHOS capacity and

restore mitochondrial function, which employed either

the manipulation of total mitochondrial mass or the

selective manipulation of mtDNA to influence mtDNA

copy number and/or heteroplasmy levels (Fig. 2).

Although these therapeutic approaches have been

mostly focused on treating primary mitochondrial dis-

orders, if human trials prove successful, they might

also be extended to treat various types of common

age-associated human diseases. Here, we briefly

describe the rationale for each strategy and discuss

applications, benefits and limitations.

Manipulation of mitochondrial mass: autophagy

The selective degradation of impaired mitochondria

certainly represents an appealing approach that could

have the power of shifting the balance in favour of the

functional mitochondria. Therefore, attempts to pro-

mote the mitochondrial turnover have been carried out

by stimulation of autophagy, the cellular process
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whereby cells can self-degrade and recycle different cel-

lular components, including mitochondria [179]. Stim-

ulation of bulk autophagy has been pursued by the

inhibition of the mammalian target of rapamycin com-

plex 1 (mTORC1), a master regulator of nutrient sens-

ing and metabolism [180]. Inhibition of mTORC1 by

using rapamycin improved mitochondrial function in

some mouse models, but had no effect in others [181–
183]. This may be explained by the complexity of

mTORC1 pathway, which engages many targets and

influences several cellular processes. In one study, it

was reported that the beneficial effect of rapamycin

treatment in a mouse model of the Leigh syndrome

was related to the redirection of cellular metabolism

towards amino acid catabolism, rather than through

the activation of autophagy [183]. Thus, the therapeu-

tic application of rapamycin and mTORC1 inhibitors

might be strongly limited by possible off-target effects.

More specific autophagy stimulators, such as urolithin

A, extended life span in Caenorhabditis elegans and

Fig. 2. Therapeutic strategies to manipulate mtDNA and disease severity. (A) Boosting mitochondrial biogenesis represents an unspecific

approach to decrease disease severity. With this approach, a general increase in all mitochondrial components, as well as mtDNA levels, is

accomplished in order to rescue biochemical OXPHOS defects. (B) Mitochondrially directed ZNFs and TALENs selectively cut mtDNA in a

sequence-specific way. Mutant mtDNA is cleaved and the resulting linear molecules are quickly degraded generating a transient mtDNA

reduction in the cell, which is restored by replication of the residual (wild-type) mtDNA. (C) A moderate and selective increase in mtDNA

copy number can be achieved by modulating TFAM levels. By doing so, mitochondrial function can be partially restored due to absolute

increase of the functional mtDNA copies. Schematic representations of mtDNA levels (black lines) and their correlation with disease severity

(green lines) are represented for each approach on the right-hand side panels.
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increased muscle function of aged mice [184]. How-

ever, the mechanisms controlling bulk autophagy and

the mitochondrial quality control are highly intricate

and far from being understood, hence, their dysregu-

lation might lead to an excessive mitochondrial clear-

ance and potential long-term harmful consequences.

Along this line, it has been recently reported that

mutations in FBXL4 in humans cause excessive mito-

chondrial turnover, which, at least partly, explains

the severity of the disease in affected patients [185].

Therefore, the downstream effects of treatment strate-

gies aiming to increase mitochondrial degradation

must be carefully evaluated in preclinical studies

before being safely translated into therapies for

human diseases.

Manipulation of mitochondrial mass: boosting

mitochondrial biogenesis

Increasing the overall amount of mitochondria by

boosting mitochondrial biogenesis represents a valid

rationale to counteract the bioenergetic defects caused

by mutations in either mtDNA or the nuclear genome

[186]. This hypothesis is supported by experimental

evidence showing that an increase in mitochondrial

mass was sufficient to restore the overall ATP produc-

tion in skeletal muscle of mice with mitochondrial

myopathy, although the individual mitochondria have

a severely impaired function [187]. Mitochondrial bio-

genesis is a highly regulated physiological process con-

trolled by both internal and external stimuli, such as

exercise, calory intake, temperature, cell division and

differentiation. The stimulation of mitochondrial bio-

genesis requires a synchronised expression of both

nuclear and mtDNA-encoded gene products. The per-

oxisome proliferator-activated receptor gamma coacti-

vator 1a (PGC1a) [188] is involved in making more

mitochondria on demand and it interacts with several

nuclear transcription factors, such as peroxisome pro-

liferator-activated receptors (PPARs), to induce the

expression of nucleus-encoded genes, including

OXPHOS subunits [189,190], Tfam and other genes

involved in mtDNA gene expression [191]. PGC1a is

post-translationally activated via phosphorylation by

the AMP-dependent kinase (AMPK) [192] and

through deacetylation by the nuclear deacetylase Sir-

tuin 1 (Sirt1) [193].

Both genetic and pharmacological interventions

have been used to target PGC1a [194]. Overexpression

of PGC-1a ameliorated the myopathy phenotype in

complex IV assembly-deficient mice [195] and partially

rescued the premature ageing phenotypes in the

mtDNA mutator mouse [196], consistent with the

hypothesis that increased mitochondrial biogenesis can

alleviate mitochondrial diseases severity. In support of

this view, studies in families carrying homoplasmic

LHON-causing mtDNA mutations have shown that

asymptomatic carriers tend to have increased mito-

chondrial biogenesis and higher mtDNA copy number

when compared with visually impaired maternal rela-

tives [65].

PGC1a can also be activated by the pan-PPAR ago-

nist bezafibrate, by the AMPK agonist 5-aminoimida-

zole-4-carboxamide ribonucleotide (AICAR) and by

Sirt1 activators and nicotinamide adenine dinucleotide

(NAD)+ precursors, that is nicotinamide riboside

(NR) and niacin. In spite of a few promising findings

[197,198], mouse studies have shown that bezafibrate

treatment had no effect or even a deleterious impact

on mitochondrial dysfunction [195,199]. In contrast,

the administration of AICAR or NR successfully res-

cued the pathological manifestations in different

mouse models of mitochondrial diseases [195,200].

Mitochondrial biogenesis boosters, such as bezafibrate,

NR and niacin, have also been tested in human trials.

A clinical trial with bezafibrate was not very encourag-

ing and suggested that the prolonged use of this drug

may worsen the metabolic signature of mitochondrial

dysfunction in patients [201]. A recently published

study with niacin supplementation was more promising

and revealed increased mitochondrial biogenesis and

improved muscle strength in patients with mitochon-

drial myopathy and NAD+ deficiency [202]. It should

be pointed out that none of these clinical trials have

yet been performed in the more rigorous double-blind

format.

Boosting mitochondrial biogenesis may provide a

therapeutic strategy to treat mitochondrial diseases.

Unfortunately, pharmacological interventions have

produced mixed results and raised questions about the

consequences of long-term treatments [201]. PGC-1a
seems to be involved in the regulation a plethora of

cellular processes by influencing the expression of a

large number genes involved in metabolic pathways,

such as gluconeogenesis, fatty acid synthesis and oxi-

dation and glycolysis [203], and its activation must be

finely tuned to avoid deleterious side effects. Indeed,

detrimental impacts on cell physiology due to the

over-activation of PGC-1a have been reported to

occur in different organs of the mouse, for example

heart [204], skeletal muscle [205] and DA neurons

[206]. In addition, several studies in mouse models

have explored whether the overexpression of PGC-1a
is a potential therapeutic strategy in PD, but the

results of these investigations provided inconsistent

and conflicting findings [207].
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Selective manipulation of mtDNA: mitoTALENs

and mitoZNFs

Currently, the most efficient strategy to shift the levels

of heteroplasmy in favour of wild-type mtDNA is the

expression of mitochondrially targeted endonucleases

[208,209]. Unfortunately, the powerful CRISPR-Cas9

system, which has revolutionised nuclear genome edit-

ing, will likely not work in mammalian mitochondria.

Although Cas9 can be easily imported after addition

of a mitochondrial targeting sequence (MTS), the

import of guide RNA into mitochondria seems

improbable. RNA import occurs in some metazoans,

but several lines of evidence suggest that mammalian

mitochondria lack RNA import system. Importantly,

mammalian mtDNA encodes the full set of tRNAs

required for mitochondrial translation overcoming the

need for tRNA import from the cytosol. Furthermore,

mammalian mitochondrial RNaseP is composed of

three protein subunits and lacks a catalytic RNA com-

ponent [210,211]. Finally, the central protuberance of

the large subunit of the mitochondrial ribosome con-

tains a mtDNA-encoded tRNA, and there is therefore

no need to import 5S rRNA from the cytosol for

mitoribosomal biogenesis [212,213]. An additional hur-

dle, besides the lack of RNA import, preventing the

use of the CRISPR-Cas9 system in mammalian mito-

chondria, is the lack of a machinery for double-strand

break (DSB) repair and homologous recombination,

whose activities are required to introduce a deletion or

any other type of mutation after Cas9-mediated DNA

cleavage.

The import into mitochondria of the transcription

activator-like effector nucleases (mitoTALENs) and

zinc finger nucleases (mitoZFNs) is straightforward, as

well-characterised machineries for protein import are

engaged. Manipulation of mtDNA with mitoTALENs

or mitoZFNs exploits distinctive features of mitochon-

drial genetics: (a) heteroplasmic pathogenic mtDNA

mutations are typically functionally recessive [214], (b)

mitochondria lack a DSB repair machinery [215], but

have an efficient mechanism for degradation of linear

mtDNA molecules [216], and (c) the mtDNA copy

number is tightly regulated and after digestion of

mutant molecules, the cells quickly recover from deple-

tion by stimulating the replication of the residual

mtDNA copies [37]. The earliest attempts to degrade

mtDNA in cells were based on the use of bacterial

restriction endonucleases targeted to mitochondria

(mitoREs) with the addition of an amino-terminal

MTS. Once imported, the mitoREs shifted the levels

of heteroplasmy both in cells [217,218] and in mice

[219,220] by selectively binding and cleaving one of the

mtDNA variants. However, the use of these enzymes

for a wider range of mutations was hampered by their

need of a unique restriction site in the mtDNA

sequence, which only rarely is generated by pathogenic

variants, and by the fact that restriction endonucleases

(REs) cannot be engineered to recognise chosen DNA

sites. These limitations were overcome by the use of

the programmable mitoTALENs and mitoZFNs.

Unlike REs, these endonucleases rely on sequence-

specific DNA-binding domains coupled to a FokI

endonuclease domain, which is active only as a dimer

and creates a DSB when both monomers are bound to

the target allele and interact. MitoTALENs and

mitoZNFs have proved efficient in targeting numerous

disease-causing mtDNA variants in cells, where they

cleave mutant genomes and thereby rescue the bio-

chemical defect [221–223]. The in vivo feasibility of

these technologies was recently demonstrated in a

heteroplasmic mouse model carrying a pathogenic

point mutation in the mitochondrial tRNAAla gene

[99]. In these mice, either mitoTALENs or mitoZFNs,

delivered by injection of adeno-associated virus (AAV)

vectors, shifted the heteroplasmy levels below the

threshold leading to amelioration of the molecular

phenotypes in heart and skeletal muscle [224,225].

These data represent important proof of concept that

mitoZFNs and mtTALENs have the potential to serve

as therapeutic tools for heteroplasmic mitochondrial

diseases. It is important to mention that the possible

success of this strategy depends on vectors that effi-

ciently can target cells in brain, skeletal muscle, heart

and other organs. Some relevant AAV vectors already

exist, and this field is under rapid development giving

hopes for more efficient targeting of the brain and

other tissues and for potential translation into the

clinic. Other issues to be addressed are common limita-

tions for any gene therapy approach, that is selectivity,

efficiency, cost and potential off-target effects. Lastly,

it should be pointed out that the use of mitoTALENs

and mitoZNFs is limited to heterosplamic mtDNA

mutations, for example point mutations and large dele-

tions, and cannot be used to treat some of the com-

mon homoplasmic pathogenic mutations, for example

those causing LHON.

Selective manipulation of mtDNA: modulation of

the absolute mtDNA levels

An increase in the absolute mtDNA copy number rep-

resents another possibility of treatment for human dis-

ease caused by heteroplasmic mtDNA mutations. In

these pathological conditions, affected individuals

always carry perfectly functional wild-type mtDNA
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molecules, in spite of high levels of mutant mtDNA. It

is widely recognised that the mutation load is an impor-

tant determinant for disease severity, whereas the role

of the absolute levels of mtDNA often has often been

neglected. Over the last 15 years, only few studies have

directly measured total mtDNA copy number in

patients with pathogenic mtDNA mutations.

Although the molecular mechanisms underlying this

regulation remain unclear, it is well established that

the amount of mtDNA is directly proportional to

TFAM protein levels (Box 1). As consequence, manip-

ulation of mtDNA copy number can be genetically

achieved through modulation of TFAM expression

[17]. Notably, a moderate overexpression of human

TFAM in wild-type mice caused nearly 50% increase

in mtDNA levels, without interfering with mtDNA

transcription, mitochondrial respiratory-chain function

or mitochondrial mass [17]. Thus, the upregulation in

mtDNA copy number can be dissociated from the

mitochondrial biogenesis process, that is it is possible

to selectively increase mtDNA copy number without

increasing the amount of mitochondria.

Experimental studies have shown that an increase in

mtDNA copy number, through TFAM overexpression,

ameliorated phenotypes in mouse models with mito-

chondrial diseases caused by heteroplasmic mtDNA

deletions [226] or a pathogenic point mutation in the

tRNAALA gene [64]. These results were further sup-

ported by the observations that increasing total

mtDNA levels partially rescued the male infertility in

the mtDNA mutator mice, which carry a large number

of different mtDNA point mutations and a linear dele-

tion [67]. Remarkably, the results of these investigations

also demonstrated that the increased mtDNA levels did

not affect the proportion of pathogenic mtDNA muta-

tions, that is the mutational load was unchanged. How-

ever, in absolute terms, the levels of wild-type mtDNA

segments were higher, which partly restored mitochon-

drial function despite the mutant mtDNA still being the

predominant species [64,67,226].

Other studies have reported beneficial effects of an

increase in mtDNA copy number in various types of

pathology, primarily not of mitochondrial origin, for

example in a mouse model of myocardial infarction

[227]. TFAM overexpression has also been reported to

improve cognitive function in an AD mouse model

[228] and to reduce the memory impairment seen in

aged mice [229]. The modulation of mtDNA levels

seems to be a more selective way to improve OXPHOS

compared with boosting the whole process of mito-

chondrial biogenesis. However, the degree of TFAM

expression must be carefully considered. We and

others have shown that moderate TFAM

overexpression had beneficial effects on cellular func-

tions in vivo [64,67,226]. In contrast, a marked TFAM

overexpression can have detrimental consequences by

impairing mtDNA transcription and causing a pro-

gressive OXPHOS dysfunction [230]. Similar negative

outcomes have been reported in S. cerevisiae where

high levels of ABF2, the yeast ortholog of TFAM, led

to a dramatic loss of mtDNA, possibly due to hyper-

compaction of the genome preventing proper replica-

tion and distribution of genomes [231]. Modulation of

mtDNA copy number through manipulation of

TFAM levels may provide a future avenue to treat not

only primary mitochondrial diseases but also to inter-

vene in other human diseases characterised by mito-

chondrial impairment.

Concluding Remarks

Mitochondrial dysfunction is heavily implicated in vari-

ety of human pathological conditions and ageing, and it

is therefore not surprising that a large number of stud-

ies have aimed to correlate the presence of mutations

and the levels of mtDNA with decline of organ func-

tion. Although a key role for mtDNA mutations in

inherited mitochondrial diseases is firmly established,

the evidence for the involvement of mtDNA levels in

common diseases and ageing remains merely correlative.

In mitochondrial diseases, high mtDNA copy number

mostly correlates with decreased disease severity, or

even with incomplete disease penetrance [65,66]. In con-

trast, the interpretation of the existing data related to

mtDNA variations in neurodegenerative disorders, can-

cer and ageing is not equally straightforward, partly

due to method-, specimen- and study design-related

issues. Recent advances in NGS enable assessment of

mtDNA mutation load and copy number in large-scale

data sets, which will much expand our knowledge about

the impact of these factors on disease burden.

Approaches exploiting the isolation and analysis of

large numbers of selected cell types will also be

required, for instance in studies on neurogenerative dis-

orders, where dysfunctional cells driving the disease

only represent a minority of the affected brain region.

In humans with mitochondrial diseases, the upregu-

lation of mtDNA copy number, mostly concomitant

with an overall increase in mitochondrial biogenesis, is

frequently occurring and typically regarded as a com-

pensatory mechanism to sustain cellular bioenergetics.

Studies of animal models have provided an experimen-

tal proof of concept for selective increase in total

mtDNA copy number induced by genetic manipula-

tion of TFAM expression ameliorating pathogenic

effects of heteroplasmic mtDNA mutations [64,67] and
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the mitochondrial impairment associated with other

diseases or with the physiological age-related decline

[227–229]. Unfortunately, the same rationale might not

be applicable to cancer, or at least not for all forms of

cancer. The available studies have indeed highlighted

that the scenario in cancer is even more complex and

varied, as mtDNA copy number can correlate with

both increased and decreased disease burden. Future

studies will be necessary to more exactly define the

impact of mtDNA copy number on human health.

Importantly, future development of therapies aimed at

moderately increasing mtDNA copy number may pro-

vide a strategy to rescue the mitochondrial dysfunction

not only in primary mitochondrial diseases but also in

age-associated degenerative diseases and ageing.
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