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S1: Materials and Methods 

 

Calculating inbreeding coefficients. Racing data for all horses who had participated in a race 

start between 2000 and 2010 was provided by Racing Australia (n=138,996). We pruned these 

data to exclude individuals who did not have their complete race records outlined in the data (e.g. 

individuals that might have just started their racing career in 2010), leaving a sample size of 

135,572. 

The genealogy of each individual born after 1970, dating back to the founders of the population, 

was also provided. The pedigree file consisted of 500,477 individuals and listed the sex, year of 

birth, and sire and dam identification for each individual. Pedigree loops were identified using 

verif_ped from PEDIG (1), and fixed by assigning the individual as a founder. F, Fa_BAL, Fa_KAL 

and AHC coefficients were calculated by utilizing Grain 1.0 (2) to run 106 stochastic gene drops 

for each individual.  

 

Calculating inbreeding from genomic data. We first estimated the proportion of homozygous 

SNPs in each individual’s genome (FH). We then calculated the proportion of each individual’s 

genome made up of runs of homozygosity (FROH). We set the minimum number of SNPs in each 

run of homozygosity (ROH) to 20, because our SNP coverage was approximately 1 SNP every 

50 Mb, making this sufficient to distinguish an ROH of 1 Mb. We used the minimal length 

parameters of 1, 2, 5, 8, 12 and 16 Mb, which correspond to approximately 50, 25, 10, 8, 5 and 3 

generations, respectively (3). Pearson correlation coefficients using R were generated between 

all measures of inbreeding.  
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Results and Discussion 

 

S2: Comparison between different methods of measuring inbreeding and purging  

 

Comparison between genealogical measures of inbreeding. There are a number of ways to 

account for inbreeding and genetic load in a population. We compared a number of genealogical 

and genomic measures to determine the optimal coefficients to analyse inbreeding trends in 

individuals and populations. We used the stochastic gene-dropping program GRain to calculate 

genealogical inbreeding values (2) (See SI Materials and Methods). This simulation method 

allows accurate calculation of a number of ancestral inbreeding coefficients by accounting for 

alleles that are identical by descent (IBD) multiple times in the pedigree. 

First, we calculated Wright’s classical inbreeding coefficient (F) (4). Although F is the 

traditional method for calculating inbreeding in a population, it does not always reflect the 

genetic load of the population (5). There are a number of coefficients that can be calculated from 

pedigree data to account for purging of load and favourable selection. These measures rely on the 

principle that selection will remove deleterious alleles from the population, so alleles that are 

IBD multiple times in a pedigree are more likely to have neutral or positive effects on fitness. 

Theoretically, a population can be purged of some or all of its genetic load, so that individuals 

with a high inbreeding coefficient may show little or no evidence of inbreeding depression (6-8). 

For this reason, accounting for potential purging provides a better reflection of genetic load than 

simply measuring F (9). A number of measures have been proposed, which all operate under the 

assumption that an allele which has been IBD more than once in an individual’s pedigree is less 

likely to have a deleterious effect on phenotype than one that is IBD for the first time. 
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The first of these coefficients, proposed by Ballou (5), measures the proportion of the genome 

that has been IBD one or more times in previous generations: 

 
𝐹a_BAL =  [𝐹𝑎(𝑠)+�1−𝐹𝑎(𝑠)�𝐹(𝑠)+𝐹𝑎(𝑑)+�1−𝐹𝑎(𝑑)�𝐹(𝑑)]

2
 

where Fa(s)  is the ancestral inbreeding coefficient of the sire, F(s)  is the inbreeding coefficient of 

the sire, Fa(d) is the ancestral inbreeding coefficient of the dam, and F(d) is the inbreeding 

coefficient of the dam. Importantly, this measure accounts for alleles that are IBD multiple times 

in each parent’s pedigree, so Fa_BAL can be greater than 0 for individuals with F=0 (8). 

In contrast, Kalinowoski’s coefficient (Fa_KAL) only accounts for alleles that are currently IBD, 

and have also been IBD in the past at least once (10). Hence, when F=0, Fa_KAL is also 0, 

resulting in a strong correlation between the two measures (Fig S1). A major shortcoming of 

Fa_BAL and Fa_KAL is that they only measure for alleles being IBD one or more times, so only 

account for high lethal, recessive alleles (11). 

 

The ancestral history coefficient (AHC) differs from Fa_BAL and Fa_KAL in that it accounts for the 

number of times an allele has been IBD in an individual’s pedigree (2). This calculation is based 

on the assumption that the more times an allele has been IBD in an individual’s pedigree, the 

more likely it is to have a neutral or beneficial effect on phenotype. It is therefore possible for an 

individual with a comprehensive and inbred pedigree to have an AHC>1. AHC is closely correlated 

with Fa_BAL because both measures account for all inbreeding events throughout the pedigree, 

although the former always holds a higher value because it quantifies the number of times an 

allele has been IBD (Fig. S1). This measure provides the most comprehensive and accurate 

reflection of purging in inbred individuals.  
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Comparison between genomic measures of inbreeding. The accuracy of genealogy-based 

inbreeding measures are highly reliant on the base population used. Each pedigree estimate 

assumes that the founders are unrelated, making them highly inaccurate for populations without 

reliable and comprehensive records. Our population has a complex pedigree with an average of 

24.70 generations, allowing us to assume that these estimates are fairly accurate. However, the 

stochastic nature of recombination and the increase of allele frequencies through selection can 

lead to variability between probability-based and actual levels of autozygosity (approximately 

2.43%) (12, 13). For this reason, there are increasing numbers of studies using high-density 

genomic information for inbreeding estimates (14). Genomic measures of inbreeding assume that 

increased levels of alleles IBD from common ancestors will result in higher levels of 

homozygosity (FH) (14, 15). 

To more accurately distinguish between alleles that are identical by state (IBS) and IBD, 

inbreeding levels are now often measured using runs of homozygosity (ROH). These long 

homozygous segments show evidence of a common ancestor, as they have not been broken down 

by recombination in meiosis (12, 16). The stochastic process of recombination means that shorter 

ROH segments correspond to ancient inbreeding, whereas larger ones correspond to recent 

consanguineous events (12, 17, 18). To differentiate between new and old inbreeding, we 

measured ROH with the minimal thresholds 1, 2, 5, 8, 12 and 16 Mb, which correspond to 50, 

25, 10, 6, 5 and 3 generations, respectively (19). We also measured each individual’s genomic 

level of homozygosity (FH), because it does not distinguish between alleles that are IBS and IBD.  

 

Pairwise relationships showed close correlations between each ROH threshold. There was very 

little difference between FROH1 and FROH2 (Fig. S2), possibly because the 45,451 SNP panel did 
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not provide adequate density to distinguish between these thresholds (3, 20, 21). There is 

increasing evidence that high-density panels are needed for accurate estimations of smaller ROH 

lengths (3, 20, 21). Some individuals in our dataset showed no evidence of recent inbreeding: six 

individuals did not have an ROH over 12 Mb (five generations), and 23 with none over 16 Mb 

(three generations).  

 

Comparison between genealogical and genomic inbreeding estimates. As we expected, there 

are some correlations between pedigree- and genomic-based measures. F showed the closest 

correlation with FROH16 (0.35, Fig. S3), probably reflecting recent inbreeding events (12, 22). 

Shorter ROH regions may not always correspond to autozygous segments, or may not be 

detected due to insufficient SNP coverage, explaining their lower correlations with F (21). 

Interestingly, our studies show a lower correlation between F and FROH than many other studies, 

with reported correlations of ~0.7 (22, 23). This is probably because much of F in the 

Thoroughbred population is attributed to individuals many generations back. The SNP density 

used in our analysis was probably not comprehensive enough to capture these distant inbreeding 

events. 

The close relationship between Fa_Kal and F measures has resulted in similar correlations with 

ROH coefficients (Fig. S3). Since AHC and Fa_Bal reflect levels of purging, rather than the 

proportion of the genome that is IBD, it is unsurprising they show no significant relationship 

with any genomic inbreeding measures. FH had no relationship with any pedigree-based measure 

of inbreeding, indicating that its failure to distinguish between IBD and IBS alleles makes it a 

crude measure of inbreeding (Fig. S3).  
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Which measure of inbreeding is best? One major shortcoming that we have identified in using 

ROH estimations to quantify inbreeding is the lack of concordance in the parameters used to 

define an ROH (24), making it difficult to compare results between studies. For example, some 

studies allow for one heterozygous SNP in an ROH because of genotyping errors, whereas others 

believe that it makes estimations inaccurate, particularly if the heterozygous SNP is at the end of 

the ROH (24). Additionally, a 50k SNP panel may not be sufficiently dense to accurately detect 

ROH, and increasing panel density can identify different ROH regions (3, 20, 21). Additionally, 

the discovery of long ROH segments in outbred human populations (25) brings into question 

their accuracy for capturing levels of inbreeding. Recombination ‘hotspots’ and high linkage 

disequilibrium are proposed to account for these long IBD segments persisting for many 

generations (21, 25, 26). Considering that the Thoroughbred population has one of the highest 

linkage disequilibrium rates of any domestic animal population (27), this makes the accuracy of 

using ROH measurements to reflect inbreeding levels in the population questionable. 

In contrast, F is a well-known and widely used method, so comparisons between different studies 

are much easier to make (although the accuracy and number of generations of the pedigree can 

confound these results). For populations with deep and complex pedigrees, such as the 

Thoroughbred population, F allows us to estimate whole-population inbreeding levels, as well as 

those for deceased individuals. In this respect, F is highly useful for studying inbreeding trends 

over time and predicting future implications for the population. However, F does not account for 

factors such as genetic drift and selection in the population, making ROH advantageous in this 

respect (17). For this reason, using FROH measures may be the most accurate way of measuring 

individual inbreeding levels in the Thoroughbred population.  
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Additionally, pedigree information can be used to estimate levels of purging and account for the 

selection of favourable alleles in a population. However, Fa_Bal and Fa_Kal do not effectively 

detect the purging of mildly deleterious alleles (11, 28). Therefore, we propose that the best 

coefficient for quantifying purging is AHC. In a deep and complex pedigree (such as the 

Thoroughbred pedigree), this coefficient best captures the effectiveness of selective breeding 

practices in increasing the frequency of favourable alleles, and the purging of highly and mildly 

deleterious alleles. 

Consequently, we have chosen F and AHC measures for the further analysis of the effects of 

inbreeding on fitness. We have also chosen ROH thresholds of 5 and 12 Mb (corresponding to 

10 and 5 generations, respectively). We chose the 5 Mb threshold to account for old inbreeding: 

with the SNP panel used in our study, any ROH estimate below 5 Mb may not truly reflect ROH 

coverage. We have also chosen the 12 Mb threshold to reflect new inbreeding, as 10% of the 

individuals in our dataset did not have any SNPs in the 16 Mb category. 

 

S3: Further output from linear mixed models.  

In our analyses we implemented multiple measures of racing performance to account for talent, 

consistency, and constitutional soundness. The first measure, cumulative earnings, accounts for 

the amount of prizemoney a Thoroughbred earns throughout their racing career, and is based on 

the assumption that an individual’s ability will be reflected by the amount of prizemoney that 

they earn. However, this measure can favour individuals that perform inconsistently, but win one 

big prizemoney race in their career. For this reason, we included earnings per start, which 

favours individuals that perform consistently well in high-class races. Individuals that only 
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contest in one or two race starts in their lifetime could still have high cumulative earnings and 

earnings per start, so we also included career length as a performance measure. Career length 

does not account for long breaks between race starts on account of injuries or poor recovery, so 

total number of starts was also included in the analysis. Lastly a measure of a horse’s consistency 

was also included as winning strike rate, because top-class individuals should win most, if not 

all, of their races. Consequently, these measures are all correlated (S4). 

 We found that sex and year of birth significantly affected all measures of racing performance. In 

all models, female horses had lower levels of performance. For prizemoney measures, this 

discrepancy is probably due to bigger, stronger males being able to win more races with higher 

prizemoney. This probably also accounts for males having a higher winning strike rate, as 

females racing against males will have less chance of winning. The lower total starts and career 

length observed for female horses can be explained by female horses being retired earlier for 

breeding purposes. Although some stallion prospects may also be retired early to stud, castrated 

males will continue racing for longer due to having no residual breeding value. 

We used the linear mixed models to estimate the predicted values of each racing performance 

measure over a range of F and AHC coefficients (Fig S5). These predictions follow the trends 

seen in the regression coefficients, with increasing F decreasing performance, and increasing 

AHC enhancing it.  

Using the numerator relationship matrix incorporated into the linear mixed models, we 

calculated the estimated breeding values (EBVs) for all individuals in the pedigree. The 

extensive pedigree information available for each individual in our sample increases the accuracy 

of our EBV information. However, it has been reported that phenotypic information over 

multiple generations will also increase the accuracy of EBV estimates (29).  
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We found that the distribution of EBVs in the population has changed over time (Fig. S6). The 

EBVs for each phenotypic measure showed similar trends, probably because of the correlations 

between measures. For this reason, we only present EBVs for cumulative earnings in the main 

body of the paper.  

 

S4: The greatest ancestral contributions to the Thoroughbred population.  

 

We determined the 20 ancestors with the greatest marginal contributions to the current 

population using iterations as implemented by PEDIG 1.0 (30). Calculating ancestral 

contributions rather than only contributions from founders accounts for bottlenecks in the 

pedigree, and is particularly advantageous in our population because it allows us to estimate and 

understand the contributions of particularly successful and popular breeders to the current 

Thoroughbred population. 

Marginal contributions account for relationships between ancestors by finding the greatest 

contributor to the population, then finding the contributions of other individuals not accounted 

for by the already selected individuals (1). Founders and individuals near the top of the pedigree 

will be favoured in marginal contribution estimations, as individuals further down in the pedigree 

will have their contributions diluted by redundancy if their ancestors have also made large 

genetic contributions to the population, leading to a large difference between their raw and 

marginal contributions. 

In this respect, marginal contributions are advantageous when modelling the heterogeneity of 

inbreeding depression. However, it is important to note that an ancestor will pass on different 

sets of genes to each of its descendants (31), so marginal contributions could overestimate 
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redundancies in the pedigree, as close relatives may have inherited completely different genetic 

information from the same common ancestor. We found large differences in the raw and 

marginal contributions of some ancestors in our dataset (Fig. S7, Table S1), such that selecting 

individuals based on raw contributions would result in a largely different sample space.  

All of the greatest marginal contributors in our dataset are closely related, some of them sharing 

common ancestors, and others that were mated to produce a number of successful and influential 

progeny (Figure S8). The large contributions made by these close relatives demonstrate the 

narrow population bottleneck from which the breed has originated, mirrored in the initial large 

increase in the F coefficient at the foundation of the breed (Figure S9).  

We found that many of these individuals were reported to be highly influential sires and dams in 

the early days of the Thoroughbred breed formation. Historically, there are considered to be four 

great sire lines responsible for the early formation of the Thoroughbred breed. Two of these, 

Herod and Eclipse, feature as the first and third greatest marginal contributors. The third, 

Highflyer is the son of Herod and Rachel, and the fourth, Matchem, is the grandson of 

Godolphin Arabian, Roxana and Brown Farewell. Highflyer’s remaining grandparent Croft’s 

Partner was not featured in the top ten contributors because his contribution has been diluted by 

the inclusion of his son, Partner. 

Of the 20 ancestors analysed for their partial contributions, five contributed to over 5% of the 

genomes of the current population and ten contributed to over 2% (Figure S1). We selected the 

top ten individuals for further analysis because they all had a pFi of over 0.005.   
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S5: Whole-population inbreeding trends over time. 

 

As expected in a closed population with a small number of dominant founders (32), F has 

increased consistently since the foundation of the Thoroughbred population (Figure S9a). AHC 

values have also increased in the population over time (Figure S9b). The exponential increase of 

AHC over time agrees with our previous findings that selection for alleles contributing favourably 

to performance has increased their frequency over time. This result is in concordance with the 

positive relationship found between AHC and performance, indicating that an individual with a 

higher AHC has a greater accumulation of these favourable alleles in their genome.  

Of the 135,572 individuals included in our racing performance analysis, the average F was 0.139 

and the average AHC was 1.973. The large difference in these values further demonstrates that the 

selection for favourable alleles derived from the individuals in the early breed formation has 

increased their frequency over time. 

We found that F levels rapidly increased after the bottleneck at the foundation of the breed. F 

then increased slowly in relation to AHC over later generations (Figure S9c). There is a collection 

of individuals from 1930 onwards that have a lower F level than the majority of the population. 

These are the result of a parent that has an unknown pedigree or from an outbreeding event, often 

with one parent originating from a different continent. Although the F of these individuals is 

low, or 0, most of them have an AHC value above 0. This indicates that both parents have 

inbreeding events in their own pedigree, which is not captured in F (see S2). We suggest that 

analysing both F and AHC is needed to thoroughly examine inbreeding trends and effects in a 

population over time. 
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S6: Pedigree structure and missing ancestors 

Although the individuals in our analysis trace back most of their pedigree lines to the founders of 

the population, a small number of ancestors have incomplete pedigree information. There are a 

number of reasons why their pedigrees are not completely recorded 33. Firstly, an ancestor may 

not be registered in the stud book because its owner could not pay the stud book fees. This was 

particularly relevant during the Great Depression in the 1930s. Before 1980, it was acceptable in 

Australia for horses to be registered for racing without having a complete pedigree in the stud 

book. This was based on the assumption that to be competitive in Thoroughbred races, these 

horses would have to be of Thoroughbred origin. Pedigree records of some horses were lost 

when they were shipped from England to Australia in the early 19th century. For horses with 

American bloodlines, many pedigree records were lost during the American Civil War. 

Additionally, when DNA testing was introduced in the late 20th century, one individual was 

found to have false parentage. The proportion of ancestors with missing pedigree information by 

year is displayed in Fig. S10. These individuals accounted for 1.4% of the total ancestors in our 

pedigree file.  

We estimated the proportion of missing ancestors by generation for all individuals used in our 

racing performance analysis (Fig. S11). No individuals in the racing performance data set have 

missing parents, and most individuals (80%) have a complete ancestry up to 6 generations (Fig. 

S11). Considering that the majority of F is captured in the first 6 generations of a pedigree22, we 

consider that this pedigree structure makes the inbreeding estimates used in our analyses highly 

accurate. 
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Fig. S1: Correlations between pedigree-based inbreeding measures estimated for Australian 
Thoroughbred racehorses (n=500,477). The inbreeding measures compared were: F, FA_BAL, 
FA_KAL and AHC. Linear regressions are represented by blue lines. Pearson correlation 
coefficients are presented at the top-right of each graph. P-values <0.05 are marked with *, and 
P-values <0.001 with **. 
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Fig. S2: Correlations between SNP-based inbreeding measures estimated for a representative 
subset of the modern Australian Thoroughbred population (n=122). The genomic measures of 
inbreeding levels compared were: FH, F_ROH1, F_ROH2, F_ROH5, F_ROH8, F_ROH12, and F_ROH16. 
Linear regressions are represented by blue lines. Pearson correlation coefficients are presented in 
the top-right of each graph. P-values <0.05 are marked with *. 
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Fig. S3: Correlations between SNP- and pedigree-based inbreeding measures for a representative 
subset of the modern Australian Thoroughbred population (n=122). The pedigree-based 
inbreeding measures compared were: F, FA_BAL, FA_KAL and AHC. The genomic measures of 
inbreeding levels compared were: FH, F_ROH1, F_ROH2, F_ROH5, F_ROH8, F_ROH12, and F_ROH16. 
Linear regressions are represented by blue lines. Pearson correlation coefficients are presented in 
the top-right of each graph. P-values <0.05 are marked with *, and P-values <0.001 with **. 
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Fig. S4: Correlations between the five measures of racing performance used in the linear mixed 
model analysis (n=135,572). The measured analysed are: cumulative earnings ($AU), earnings 
per start ($AU), career length (in months), total number of starts and winning strike rate. Linear 
regressions are represented by the blue lines. Pearson correlation coefficients are presented in the 
top-right of each graph. P-values <0.001 are marked with **.  
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Fig. S5: Predicted values of the effects of F and AHC on performance (n=135, 572). Estimates 
derived from linear mixed models. Error bars represent 1 standard error from the mean.  
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Fig. S6: Selective breeding has increased estimated breeding values (EBVs) in the Australian 
Thoroughbred population (n=257,249). Frequency distributions depict the EBVs for cumulative 
earnings (A), earnings per start (B), career length (C), total starts (D) and winning strike rate (E) 
measures. Box and whisker plot of the distributions of EBVs over time are also given for 
cumulative earnings (F), earnings per start (G), career length (H), total starts (I) and winning 
strike rate (J). 
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Fig. S7: The top 20 marginal contributors to the contemporary Thoroughbred population 
(n=135,572). These ancestors were selected using their marginal contributions (A), which can 
deviate from their raw contribution (B). The blue line indicates the 5% marginal contribution 
level and the red line represents the 2% level. 
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Fig. S8: Pedigrees showing the relationships between the 20 greatest marginal contributors to the 
Australian Thoroughbred population. 
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Fig. S9: Inbreeding and purging trends in the Australian Thoroughbred population dating from 
the foundation of the breed in 1753 to the modern 21st century population (n=500,477). (A) 
Changes in the levels of F over time in the population. The regression line shows the increasing 
trend in inbreeding over time. (B) The distribution of AHC levels over time in the population. The 
regression line shows the accumulation of alleles identical by descent multiple times in the 
pedigree. (C) F versus AHC with year of birth included as a sliding colour scale. 
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Fig. S10: Proportion of ancestors with incomplete pedigree information from the genealogy of 
the Australian Thoroughbred horses that were used in the racing performance analysis 
(n=119,637). The date of birth for these individuals was listed as after the studbook was closed 
(in 1792), so are not considered to be founders of the Thoroughbred population. Data points are 
given as the proportion of individuals with missing pedigree information from all individuals 
born over a 10-year period.  
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Fig. S11: Proportion of unknown ancestors (n=119,637) over 25 generations for all 
Thoroughbred horses that were used in the analysis of racing performance (n=135,572). 
Proportions were estimated as the number of individuals with pedigree information listed as 0, 
divided by the total number of individuals found in each generation. 
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Table S1: The marginal and raw contributions for the top 20 ancestors for the current population 

(n=135,572), selected based on their marginal contributions.  

Name Year of birth Raw Marginal 

Herod 1758 0.1811 0.1811 

Godolphin Barb 1724 0.1383 0.1383 

Eclipse 1764 0.133 0.1164 

Snap 1718 0.0718 0.0718 

Partner 1718 0.0966 0.0514 

St Simon 1881 0.0996 0.0423 

Rachel 1763 0.065 0.0364 

Touchstone 1831 0.0813 0.0313 

Stockwell 1849 0.0822 0.0307 

Roxana 1718 0.0305 0.0224 

Crab 1722 0.0268 0.0202 

Trumpator 1782 0.0511 0.0196 

Bartlet's Childers 1716 0.0447 0.0147 

Grey Robinson 1723 0.0442 0.0145 

Miss Slamerkin 1729 0.0182 0.0133 

Bay Bolton 1705 0.036 0.0132 

Brown Farewell 1753 0.0212 0.0116 

Termagant 1772 0.0249 0.0112 

Grecian Princess 1770 0.0256 0.0105 

Flying Whigg 1715 0.0204 0.009 
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