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IgA nephropathy (IgAN) is the most common form of primary glomerulonephritis

worldwide and a common cause of end-stage renal disease. Evaluation of a kidney

biopsy is necessary for diagnosis, with routine immunofluorescencemicroscopy revealing

dominant or co-dominant IgA immunodeposits usually with complement C3 and

sometimes IgG and/or IgM. IgA nephropathy reduces life expectancy by more than 10

years and leads to kidney failure in 20–40% of patients within 20 years of diagnosis.

There is accumulating clinical, genetic, and biochemical evidence that complement

plays an important role in the pathogenesis of IgA nephropathy. The presence of

C3 differentiates the diagnosis of IgA nephropathy from the subclinical deposition of

glomerular IgA. Markers for the activation of the alternative and mannan-binding lectin

(MBL) pathways in renal-biopsy specimens are associated with disease activity and

portend a worse renal outcome. Complement proteins in the circulation have also been

evaluated in IgA nephropathy and found to be of prognostic value. Recently, genetic

studies have identified IgA nephropathy-associated loci. Within these loci are genes

encoding products involved in complement regulation and interaction with immune

complexes. Put together, these data identify the complement cascade as a rational

treatment target for this chronic kidney disease. Recent case reports on the successful

use of humanized anti-C5 monoclonal antibody eculizumab are consistent with this

hypothesis, but a better understanding of the role of complement in IgA nephropathy

is needed to guide future therapeutic interventions.

Keywords: complement, IgA nephropathy, alternative complement pathway, mannan binding lectin complement

pathway, IgAN pathogenesis, IgAN, IgAN treatment

INTRODUCTION

IgA nephropathy (IgAN), initially described by Berger and Hinglais in 1968 (1), is the most
common primary glomerulopathy in many countries. IgAN causes end-stage renal disease in
20–40% of the patients within 20 years after diagnosis (2), and reduces life expectancy by 10
years (3). The diagnosis is based on immunofluorescence- or immunohistochemical-microscopic
examination showing IgA as the dominant or co-dominant immunoglobulin in the glomerular
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immunodeposits (4). These deposits may also contain IgG, IgM,
or both (4). The IgA is exclusively of the IgA1 subclass (5).
Complement component C3 is present in the same distribution
as IgA in up to 90% of biopsies (4).

Recent studies have confirmed an autoimmune nature
of IgAN. The most widely accepted mechanism for the
pathophysiology of the disease entails four “hits” (Figure 1) (6).
The first hit refers to increased levels of circulatory polymeric
IgA1 with aberrant O-glycosylation of its hinge region. These
molecules lack galactose in some O-glycans in the hinge
region (galactose-deficient IgA1, Gd-IgA1), thus exposing N-
acetylgalactosamine (GalNAc) as terminal glycan. The second hit
is the formation of glycan-specific IgG or IgA1 autoantibodies
targeting terminal GalNAc-containing hinge region of Gd-IgA1
(7). The third hit is formation of circulating immune complexes
comprising Gd-IgA1 and IgG autoantibody. Other proteins can
bind Gd-IgA1, such as the soluble Fcα receptor (sCD89), to
form complexes, although it is not clear whether such complexes
would activate complement (8). Some of the circulating immune
complexes pass through fenestrae in the glomerular capillaries to
enter the mesangium where they may incite cellular proliferation
of mesangial cells and overproduction of extracellular matrix,
cytokines, and chemokines (hit four) that potentially lead to
chronic kidney damage. This proposed multi-step process is
consistent with the finding that glomerular IgA immunodeposits
of patients with IgAN are enriched for Gd-IgA1 (9, 10) and IgG
co-deposits are of IgG1 and IgG3 subclasses, as are the circulatory
IgG autoantibodies specific for Gd-IgA1 (7, 11).

Key observations in kidney transplantation support the notion
that kidneys in IgAN are damaged as innocent bystanders: IgAN
frequently recurs in allografts, whereas IgA deposits clear from
kidneys of donors with subclinical IgAN within a few weeks after
implantation into non-IgAN recipients (12).

IgAN is broadly categorized as primary or secondary,
i.e., associated with a systemic disease, be it an infectious,
inflammatory, or autoimmune process (13). Within primary
IgAN the spectrum of disease varies substantially. The clinical
presentation differs between children and adults, and the
disease severity as well as gender distribution across ethnic and
racial backgrounds differ widely. IgAN can manifest without
extra-renal involvement, or as part of a systemic vasculitis
phenotype currently referred to as IgA vasculitis with nephritis
(previously Henoch Schönlein pupura nephritis) (14). About
5–8% of patients have a first- or second-degree relative with
biopsy-proven IgAN or urinary abnormalities suggesting a
familial occurrence or genetic predisposition for the disease
(15). All these observations raise the possibility that the
renal pathology phenotype we call IgAN results from different
pathophysiologic processes.

In recent years, mounting pathologic, biochemical,
experimental, and genetic findings have supported a pivotal
role of complement activation in disease onset and progression
of IgAN. In particular, the alternative and mannan-binding
lectin (MBL) pathways seem to be involved. These observations,
in turn, have generated tremendous interest in targeting
complement pathways as an approach to treatment.

BRIEF OVERVIEW OF THE
COMPLEMENT-ACTIVATION PATHWAYS

Early knowledge of complement proteins stemmed from the
19th-century discovery of a heat-labile component of normal
plasma that augmented the opsonization of bacteria by antibodies
and enabled antibodies to kill some bacteria (16, 17). The name
“complement” was derived from the description of the activity
that “complemented” the antibacterial activity of antibodies.
The complement system is an important link between innate
and adaptive immunity as it participates in immunosurveillance
and tissue homeostasis. The system consists of the activation
cascade of∼50 proteins located in plasma, tissues, and cells (18–
20). Many of these complement-associated proteins have been
described as proteases that are activated by proteolytic cleavage.
This cascade of proteolytic events must be well-controlled for
the system to work properly. A malfunction may result in
immunodeficiency or autoimmune manifestations (21–23).

Classical, alternative, and lectin pathways are the three known
ways of complement system activation (Figure 2). Each pathway
has a different triggering mechanism; however, after creating
the C3-activating enzymes (C3 convertases), the pathways share
the same sequence of events that culminates with assembly of
the membrane-attack complex (MAC) (26). The first activated
component of the classical pathway is C1q protein that recognizes
an antigen-antibody (IgG or IgM) complex and subsequently
binds its partners C1r and C1s to create a protein complex
named C1 (C1q:C1r2:C1s2) (27, 28). C1 has the ability to
cleave complement components C2 and C4, into C2a and
C4b, respectively, that interact to form C3 convertase (C4b2a).
Subsequently, the cleavage of component C3 by participation of
C3 convertase produces two proteins. The smaller submit C3a is
an anaphylatoxin that mediates inflammation. The larger subunit
C3b is an opsonin that binds covalently through a reactive
thioester bond to adjacent pathogenmolecule and thereby targets
it for destruction by phagocytes equipped with receptors for
C3b. As the next step of the cascade, C5 convertase is formed
by association of C3b with C4b2a or with C3bBb (the product
of cleavage from the alternative pathway). C5 convertase then
releases the C5a subunit from C5 protein and the remaining C5b
fragment initiates formation of the MAC. After the addition of
components C6, C7, and C8, the complex C5b-8 is incorporated
into the cell membrane, followed by addition of 10–16 units
of C9 component that are arranged in the shape of ring,
creating a pore in the membrane and leading to cell lysis and
death. C3a and C5a cleavage products have inflammatory and
chemo-attractant activities exerted through the corresponding
C3a and C5a receptors. Moreover, complement functions include
facilitation of uptake and destruction of pathogens by phagocytic
cells through the specific recognition by complement receptors
on phagocytes. There are six types of complement receptors:
CR1-4, and C3a and C5a receptors (29, 30).

The alternative pathway is continuously activated at a low
level, and is amplified on activating surfaces or in the fluid
phase by bacteria, dying cells, and immune complexes. The
spontaneous hydrolysis of a thioester bond in C3 component
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FIGURE 1 | Proposed four-hit pathogenesis of IgAN. Circulatory galactose-deficient IgA1 (Gd-IgA1) (Hit 1) is recognized by specific autoantibodies (Hit 2) to form

circulating immune complexes (Hit 3). Some of these immune complexes deposit in the kidneys, thereby leading to mesangial activation, enhanced proliferation of

mesangial cells, and ultimately kidney injury (Hit 4). Certain genetic loci have been associated with increased risk for developing IgAN. The activation of the alternative

and, at least in some patients, mannan-binding lectin (MBL) pathways by immune complexes is involved in disease pathogenesis.

produces C3b(H2O) that is tightly controlled by plasma
regulatory proteins (factors H [FH] and I [FI]; membrane
cofactor protein [MCP, CD46]; complement receptor 1 [CR1,
CD35]; decay accelerating factor [DAF, CD55]; and complement
factor H-related proteins [CFHRs]) (31). Together, these
regulators prevent the formation or enhance the dissociation of
the alternative pathway C3 convertase (FH, CR1, and DAF) or
serve as cofactors for FI-mediated inactivation of C3b to iC3b
(FH, MCP, and CR1). CFHRs compete with FH. Properdin is
a positive regulator of the alternative pathway, with its main
role of stabilizing the alternative pathway C3 convertase (and C5
convertase). Active convertase C3bBb acts similarly to C4b2a, as
it activates C5 convertase that leads to formation ofMAC (29, 30).

The lectin pathway is stimulated upon binding of MBL with
MBL-associated serine proteases (MASP) or ficolins to specific
carbohydrate patterns. MASP-2 can also directly cleave C3 while
bypassing the usual sequences to activate C4 and/or C2 (32).

Recent data have shown that renin, an aspartate protease
produced by juxtaglomerular apparatus in the kidneys, can also
function as a C3 convertase to activate the terminal portion of the
complement cascade (33).

ROLE OF COMPLEMENT PROTEINS
IN IgAN

Complement proteins are activated in IgAN. Immuno-
histochemical findings of C3, properdin, C4d, MBL and C5b-9
deposits in mesangium of IgAN biopsy samples, coupled with
the general absence of C1q, confirm activation of alternative and
lectin pathways rather than classical pathway (24, 34, 35).

The complement cascade is regulated at several levels to
prevent unwanted (uncontrolled) activation. As noted above,

one of the controlling steps of the alternative pathway relies
on complement FH that is present in plasma and on tissue
surfaces. It has two functions, stabilizing complexes with C3b
and accelerating dissociation of C3bBb. CFHRs are sequentially
similar to FH and can compete with FH for C3b binding.
These proteins have been studied as possible risk factors of
IgAN. In a study with 1,126 IgAN patients, higher circulating
levels of CFHR-5 were associated with IgAN development and
progression (36, 37). Another study showed that plasma levels
of FH antagonists FHR-1 and the FHR-1/FH ratio were elevated
in patients with IgAN and associated with disease progression,
whereas the plasma level of FHR-5 and the FHR-5/FH ratio
were not. However, elevated levels of FHR-5 correlated with poor
response to immunosuppressive therapy (38, 39). Moreover, gene
deletions of CFHR1,3 (protective alleles) and some rare variants
of CFHR5 are associated with IgAN susceptibility.

Complement Activation by IgA, IgG, IgM,
and Immune Complexes
Human IgG antibodies can have pro- and anti-inflammatory
activities, depending on the engagement of Fcγ receptors and the
activation of the complement system, which, in turn, depends
on the IgG subclass, hexamerization, glycosylation, and antigen
density (40–49). Activation of the classical pathway by IgG
(and IgM) isotypes (mostly driven by IgM and IgG1 and IgG3
subclasses, and hexameric IgG) results in production of pro-
inflammatory C3a and C5a (50). This process then triggers
recruitment of effector cells wherein the deposition of C3b on
target cells enables recognition by C3b receptors on phagocytic
and antigen-presenting cells. Moreover, the capacity of IgG to
activate complement further depends on glycosylation of its Fc
segment. For example, IgG can also activate the lectin pathway
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FIGURE 2 | Complement activation pathways and examples of complement-targeting therapeutics for IgAN. The three pathways of complement activation, classical,

lectin, and alternative, are initiated by interactions of complement proteins with distinct structures. Complexes of antigen and antibody can activate the classical

pathway. Mannan-binding lectin recognizes carbohydrate structures and, upon association with serine proteases (MASP, mannose-associated serine proteases), can

activate the lectin pathway. Complement C3 that is covalently bound to microorganism surfaces as C3b initiates the cascade of the alternative pathway. Each

pathway can ultimately generate an active C3 convertase, resulting in cleavage of C3 component into C3a and C3b fragments. C3b can interact with C4b2b or

C3bBb to produce C5 convertase that cleaves C5 into C5a and C5b fragments. C5b binds to the cell membrane and serves as a platform for assembly of the

membrane attack complex (MAC) (24, 25). The formation of MAC can be inhibited by membrane-bound CD59 that binds to C8 and/or C9. Several other regulatory

proteins of the complement-activation pathways are shown in red. Five complement-targeting therapeutics are shown in blue rounded rectangles. These reagents

include two monoclonal antibodies (eculizumab that blocks cleavage of C5; OMS721 targeting MASP-2 that inhibits its protease activity), a C5a receptor antagonist

(CCX168), a low-molecular-weight inhibitor of factor B (LNP023), and an inhibitor of C3 activation (APL-2). CR1, complement receptor 1; CFHR 1-5, complement

factor H-related proteins 1-5; DAF, decay-accelerating factor; FB, factor B; FD, factor D; FI, factor I; Gd-IgA1, galactose-deficient IgA1; Gd-IgA1-IC,

galactose-deficient IgA1-containing immune complexes; MCP, membrane cofactor protein; P, properdin.

if the Fc glycans consist of complex N-glycans with terminal
N-acetylglucosamine (i.e., galactose-deficient N-glycans) (51).

In contrast to IgG and IgM, human IgA does not
activate complement in the fluid phase and is considered
anti-inflammatory. However, differential IgA glycosylation of

monomeric and polymeric IgA bound in immune complexes
may positively or negatively impact complement activation (52).
Mouse models have shown that autoantibodies can activate the
alternative pathway and induce cell lysis and tissue damage or
target autologous complement components. Such autoantibodies
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may play a role in several diseases, especially vascular diseases
(53). A passive mouse model of IgAN that uses pre-formed
immune complexes comprised of human Gd-IgA1 and human
IgG autoantibody specific for Gd-IgA1 induces hematuria
and proteinuria; moreover, the glomeruli exhibit mesangial
hypercellularity and deposits of IgG, IgA1, and C3 (14).

Activation of the complement system by immune complexes
is less well-understood. The relative representation of
immunoglobulin isotypes in an immune complex may co-
determine which complement pathway or pathways are
activated (54). This finding may arm researchers with tools and
approaches for use in complement modulation with therapeutics
(55). Selected examples relevant for IgAN are shown in Figure 2.

COMPLEMENT PROTEINS AND
COMPLEMENT FRAGMENTS
IN PATHOLOGY

Presence of Complement Elements
in Glomeruli
A characteristic immunofluorescence-microscopy feature of
IgAN renal biopsies is the almost universal glomerular deposition
of some complement proteins with IgA. C3 is the most abundant,
found in up to 90% of cases (56–60). C3 co-deposits could
also be considered a biomarker of actual IgAN in comparison
to isolated IgA deposition without renal injury. Interestingly,
a European necropsy study from 753 deaths due to suicide
or violent deaths (excluding persons with secondary forms of
IgAN) found asymptomatic IgA deposition in the kidneys of
6.9% of individuals (61). Of those, only 4 were C3-positive
(0.5%). A study from Japan evaluated the prevalence of IgA
deposition among 510 kidney donors whose renal allografts
were biopsied at the time of implantation. The frequency of
subclinical IgA deposition was 16.1%, with concomitant C3
deposition reported in 16 individuals (3%) (62). These studies
show that complement activation may distinguish isolated from
nephritogenic IgA deposition. Notably, the intensity of C3
deposition by immunofluorescence studies can be influenced by
genetic variations in the complement-encoding genes. Patients
with at least one allele for a large deletion in the genes
encoding CFHR proteins (1CFHR3,1) have less glomerular
immunofluorescence staining for C3 compared to individuals
with two wild-type alleles (63).

Apart from C3, other complement elements can be co-
deposited with IgA. The presence of FH or properdin, suggesting
activation of the alternative pathway, has been frequently found
in mesangial areas of IgAN patients (59, 64, 65). More recently,
mass-spectrometric analysis of micro-dissected glomeruli from
IgAN kidney-biopsy specimens showed significant amounts
of C3 and C5 as well as all of the complement elements
located downstream from the activation cascade (C6 to C9)
when compared to biopsies of normal kidneys (66). This
result confirms the presence of C5b-9 in IgAN glomeruli, as
shown in early immunostaining-based studies (64, 67, 68). The
most important point from this study is the accumulation
of alternative-pathway regulation proteins, such as FH, and

also CFHR 1,2,3, and 5. Moreover, using targeted proteomic
profiling, a reduced abundance of complement receptor 1 (CR1)
was detected in biopsy specimens from IgAN patients with
progressive vs. non-progressive disease (66, 69).

The lectin pathway is activated in some patients with IgAN
(70). This subset of patients exhibits mesangial deposition of C4d,
MBL, MBL-associated serine proteases (MASPs) 1 and 2 and L-
ficolin (70). In a large multi-center Spanish cohort of 283 IgAN
patients, C4d deposition was found in 38% of cases (71).

Hallmarks of classical pathway activation, such as C1q, are
usually not detected in the glomeruli of patients with IgAN
(57), although it may be found in biopsies with advanced
glomerulosclerosis (72). Therefore, the presence of glomerular
C4d in IgAN suggests activation of the lectin pathway rather than
the classical pathway.

Association of Complement Protein
Deposition With Disease Severity
and Prognosis
The intensity of mesangial C3 deposition has been negatively
correlated with renal survival in a retrospective study of 343
Korean IgAN patients (58). A trend toward a similar finding
was reported in a large study of French patients, although the
finding did not reach statistical significance (63). The prognostic
implications of detection of early (C3b, C3c, iC3b) vs. late (C3d)
proteolytic products in mesangial deposits remain matters of
debate. One study reported more active disease associated with
C3c deposition compared to C3d (73). Another recent study
found C3d and C3c/C3b/iC3b were independently associated
with progressive disease in a small number of patients (38).
C5b-9 deposits have been associated with disease activity in
some immunostaining-based studies (38, 74). A recent study
using a proteomic approach also confirmed that the presence of
glomerular complement protein deposition was associated with
progressive IgAN (66).

The deposition of regulatory proteins of the alternative
pathway has also been related to the activity of IgAN. Patients
with progressive disease had more FH and CFHRs 2 and
5 and less CR1 as assessed by mass spectrometry (66). An
immunostaining approach very recently confirmed deposition of
CFHR1 and CFHR5, with frequency of the finding dependent on
disease severity (38). Notably, glomerular deposition of CFHR5
was significantly more frequent in biopsies from 19 patients with
progressive IgAN compared to 18 stable counterparts (odds ratio
[OR] 13.4 [2.2–66.9]). On the contrary, FH was less frequently
deposited (OR 0.1 [0.08–0.87]) with progressive disease. These
findings suggest an imbalance between CFHR5 and FH that
may accentuate disease severity. Indeed, CFHRs are sequentially
similar to FH and can compete with FH for C3b binding, but
lack some regulatory functions. For example, CFHR1, compared
to FH, lacks FI cofactor activity and the capacity to accelerate
decay of C3 convertase. CFHR5 can act as FI cofactor but only
at supra-physiologic concentrations, thus being less efficient than
FH. Nevertheless, the promising results of these early studies
need to be confirmed in larger cohorts.
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The deposition of lectin pathway elements has been associated
with poorer outcomes in IgAN in several studies. MBL
deposits, found in about 25–35% of patients, have been
associated with higher proteinuria, lower eGFR, and more severe
histopathological lesions (70, 75). Several retrospective studies
have confirmed the deleterious prognostic impact of mesangial
C4d deposition on renal survival (71, 76, 77). In those series, the
prevalence of C4d positivity ranged from 21% in the pediatric
cohort up to 38% in the adult Spanish cohort (71, 76, 77).

Mesangial co-deposition of complement elements highlights
the pathophysiological role of activation of the alternative and
lectin pathways in IgAN and can be considered to be a biomarker
of the disease itself as well as its severity. The complexity of
the combinations of those deposited proteins offers a potential
approach to personalize complement-targeting therapies for
patients in the future.

COMPLEMENT FRAGMENTS IN THE
CIRCULATION OF IgAN PATIENTS

Despite the presence of normal or elevated C3 levels in
the circulation of most Caucasian patients with IgAN, C3
activation fragments are present in about 50% of patients (78).
Subsequently, larger studies showed that 45% of the patients with
IgAN had a significantly elevated C3dg level (79) and 70% of
pediatric IgAN patients had significantly elevated C3d/C3 ratio
in the circulation (80).

Two groups examined plasma levels of activated C3 (actC3)
using somewhat similar monoclonal antibodies that detected
neoantigens expressed after activation of C3 (81, 82). These
monoclonal antibodies were produced in the laboratories of
highly accomplished complement investigators, Drs. Eberhard
(Scripps) and Götze (Göttingen). The neoantigen recognized by
the Scripps antibody is on iC3b, C3dg, and C3d (83), while the
Göttingen antibody recognized C3b, iC3b, C3dg, and C3d (81).
Data generated from use of the Scripps antibody are available
only for subjects with systemic lupus erythematosus (SLE) (84).
Neither antibody appears to be available today.

ActC3 in plasma was detected on one occasion for 73% of 55
adult and 57% of 28 pediatric German patients with IgAN when
compared to healthy controls (82). When compared to patients
with non-immune renal diseases, an elevated plasma actC3 level
was found in 30% of patients with IgAN (82). There was an
association with progressive loss of renal function with a single
elevated actC3 level, with 75% sensitivity and 89% specificity
for predicting progression. Weak, but significant, correlations
were shown for degree of proteinuria andmicroscopic hematuria.
In a subsequent study of an expanded cohort, mean plasma
C3a level was higher for patients with IgAN compared to
healthy controls, but mean levels for patients with stable renal
function or progressive disease were similar (85). Plasma actC3
levels were near normal for the US patients with normal or
minimal mesangial changes, likely corresponding to an Oxford
score of M0, E0, S0, T0, and C0 (81). Patients with mesangial
proliferation, crescents, or segmental glomerulosclerosis had
elevated levels compared to healthy adult controls (81). Plasma

C3a levels were significantly elevated for 35% of 46 adult patients
with IgAN or IgA vasculitis with nephritis (86). In this study,
the plasma C3a level was significantly associated with serum
creatinine concentration but not 24-h urinary protein excretion.
In the expanded German cohort cited above, the mean plasma
C3a level was higher in adult patients with IgAN as compared
to healthy controls (85). In this study, plasma C3a level did not
correlate with the plasma actC3 level and the mean level did not
differ between patients with stable renal function or progressive
dysfunction. These findings suggest that the plasma C3a level
does not supplant the plasma actC3 level for predicting decline
in renal function.

Prior to the delineation of the MBL pathway (87, 88),
fragments generated by activation of C4 were considered
evidence of activation of the classical pathway. As noted above,
we now understand that, for patients with IgAN, they are more
likely generated through the MBL pathway. Significant elevation
of plasma C4d/C4 ratio was found on at least one occasion
for 28% of adult and 11% of pediatric patients with IgAN
(80). C4-C3 complexes, assumed to indicate activation of the
classical pathway, were elevated in only 8% of patients with
IgAN (82).

In two early studies, soluble C5b-9 levels were normal for
pediatric and adult patients with IgAN (81, 82). However, another
study reported significantly elevated plasma C5b-9 levels for 17%
of adult patients with IgAN (79).

Serum complement levels have also been investigated as
diagnostic tools. In a Japanese study including 418 healthy
individuals, and 195 IgAN and 111 non-IgAN glomerular disease
patients, the pre-biopsy ratio of serum IgA to C3 (IgA/C3)
was highest among IgAN patients. Additionally, it was a good
diagnostic marker to distinguish IgAN from other glomerular
diseases. The higher serum IgA/C3 ratio in IgAN patients
compared to that in non-IgAN glomerular disease patients was
driven by not only a significantly lower C3 level but also a
significantly higher IgA level (89). Several studies from East Asia
also suggest that the IgA/C3 ratio can be used as a prognostic
marker, with higher values being associated with more severe
disease histology (90) and worse clinical outcomes including
urinary protein excretion, hematuria, and higher creatinine level
(91). Among Japanese patients treated with corticosteroids and
tonsillectomy, a higher IgA/C3 ratio was associated with a higher
incidence of disease recurrence (92).

Complement Proteins and IgA-Containing
Immune Complexes in IgAN
In IgAN, the presence of IgA-containing circulating immune
complexes (93–97) and association of complement-containing
immune complexes with disease activity have been observed
in early studies, (98–101) with many of these observations
clarified in follow-up studies, as detailed in the section above.
It is now thought that the pathogenic IgA1-containing immune
complexes, that can activate primary human mesangial cells in
culture to proliferate and produce cytokines and extracellular
matrix, play a key role in the pathogenesis of IgAN (19,
33, 96, 102–109). Moreover, studies of various animal models
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of IgAN also indicate complement involvement in disease
development (14, 110).

Analysis of a model of immune complexes, heat-aggregated
mixture of human IgG and IgA1, indicated that these mixed-
immunoglobulin aggregates, but not IgA alone, activated C3
(111). Moreover, a study of IgA immune complexes formed in
vitro fromGd-IgA1 and anti-glycan IgG antibodies in cord-blood
serum indicated that the capacity of these complexes to activate
proliferation of mesangial cells was dependent on a heat-sensitive
serum factor, presumably complement (112). This model of
formation of immune complexes in vitro was later enhanced by
using recombinant Gd-IgA1-specific IgG derived from an IgAN
patient (7, 112). Notably, these immune complexes, when formed
in the presence of serum, also activate cultured primary human
mesangial cells (102, 104, 105, 113).

C3 is present in IgA1-containing circulating immune
complexes of patients with IgAN (114). A pilot study
of IgA1-containing circulating immune complexes from
IgAN patients as well as those formed in vitro indicated
the presence of C3 products (115). Specifically, C3 α and
β chains were detected in the active, large-molecular-
mass immune complexes consisting of galactose-deficient
IgA1 and recombinant IgG autoantibody. Targeted mass
spectrometric analysis identified iC3b, C3c, and C3dg
fragments in these complexes. Together, these findings are
suggestive of direct binding of C3 and activation of the
alternative pathway in this in vitro model of IgAN immune
complexes (14, 35).

GENETIC STUDIES ON THE ROLE OF
COMPLEMENT PROTEINS IN IgAN

Genetic influences in the development of IgAN were first
implicated by a 1985 study of a familial form of this disease
(15). Although more studies followed [e.g., (116, 117)], a
better appreciation of the impact had to wait until technical
advances in genomics enabled genome-wide association studies
(GWAS). GWAS of IgAN then provided the initial insight
into the genetic architecture of IgAN by identifying specific
susceptibility loci across cohorts from Europe, North America
and East Asia (118–125). Common genetic variants (including
those affecting the alternative complement pathway) may in
part explain the geographical differences in disease prevalence
worldwide (126). Serum levels of the autoantigen, Gd-IgA1,
represent a heritable trait (127, 128) and two loci encoding a
specific glycosylation enzyme and its chaperone are linked to this
phenotype based on two recent GWAS publications (129, 130). A
reader interested in more details on GWAS studies and genetics
of IgAN is referred to more specialized reviews [e.g., (126,
131–135)]. Here, we will briefly present genetic and genomic
data related to the role of complement in the pathogenesis
of IgAN.

Among the loci associated with IgAN that are related to
complement are single-nucleotide polymorphisms (SNPs) on
chromosome 1q32 (centered on reference SNP ID number [rs]
rs6677604) and 16p11 (rs11574637 and rs7190997). The locus

on chromosome 1q32 includes a cluster of genes (CFHR 1-
5) that encode factor H-related proteins and rs6677604 is a
surrogate marker of CFHR1,3 gene deletion (CFHR3,11). This
allele is associated with a reduced risk of developing IgAN. As
CFHR peptides are involved in the regulation of the alternative
pathway, the absence of these CFHR peptides may lead to a more
potent inhibition of complement system by FH. This postulate
is supported by a recent study; it showed that CFHR3,11
(heterozygous or homozygous) was associated with a reduced
level of glomerular immune deposits (IgA, IgG, and C3) (63).
These findings correspond well with the early observations about
the involvement of the complement system in IgAN (35, 99)
and the current understating of complement’s role in IgAN (34,
136). Moreover, several studies confirmed that genetic variants
in CFH, CFHR3,1, and possibly CFHR5, can differentially affect
complement activation and, thus, impact predisposition to IgAN
(34, 37, 137). For example, serum CFH levels are negatively
associated with mesangial C3 deposition (37). For CFHR5, 28
rare and 4 common variants in amino-acid sequence were
identified in a Chinese cohort and the distribution of rare
variants in patients with IgAN differed significantly from that
in controls (137). Moreover, some of the rare variants were
functional, as shown by the reduced or increased C3b binding
by recombinant CFHR5 variant proteins compared to the
wild-type protein.

The second IgAN GWAS locus related to complement is on
chromosome 16p11 that contains ITGAM and ITGAX genes
that encode integrins αM and αX, respectively. These integrins
have roles in the formation of leukocyte-specific complement
receptors 3 and 4 by combining with the integrin β2 chain.
ITGAM gene product, also known as CD11b, is the α-chain of
the αMβ2 integrin. This leukocyte-specific integrin regulates cell
activation and adhesion of neutrophils and monocytes, enabling
endothelium stimulation and phagocytosis of complement-
coated particles. This locus is associated with several other
autoimmune diseases, including SLE (138, 139). The SLE-
associated variant is related to a reduced clearance of immune
complexes (140). α-X chain protein associates with β2-chain to
form another leukocyte-specific integrin with functions thought
to be similar to those of ITGAM.

Together, recent GWAS have currently identified 22 IgAN-
associated loci. Within these loci are genes encoding products
involved in complement regulation and interaction with immune
complexes that may account for these associations with IgAN.
These findings have provided novel insights about possible
mechanisms of disease. Follow-up genetic and biochemical
studies are needed to delineate the precise roles of these
complement-associated genes and their alleles.

COMPLEMENT SYSTEM AS TARGET FOR
FUTURE THERAPIES

Recent scientific advances have improved our understanding
of the role of complement in the pathogenesis of IgAN.
This information has led to identification of new potential
therapeutic targets to halt or slow the disease course. So far,
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FIGURE 3 | Examples of therapeutic control of complement-activation pathways. (A) The complex of C5 and the Fab derived from eculizumab antibody (PDB ID:

5I5K) (145) are shown in cartoon model with the heavy (H) and light (L) chains of the Fab colored in magenta and blue, respectively. C5 is shaded in pale cyan, while

macroglobulin domain 7 (MG7), the site of eculizumab binding on C5, is highlighted in green. C5a is yellow and the C5a-receptor-activating pentapeptide cleavage

site is red. (B) C5a (yellow) binds to the membrane-associated C5a receptor (C5aR, gray background) via the C-terminal C5a pentapeptide (red). CCX168 (Avacopan,

yellow stick model) binds to the surface of C5aR (pocket shaded in cyan), thereby blocking C5a binding through allosteric effects on the C5a-binding pocket. The

C5a/C5aR model is based on PDB ID: 6C1R (146). (C) Compstatin, and APL-2 are inhibitors of activation of C3. The crystal structure of C3c (PDB ID: 2QKI) (147), a

major proteolytic fragment of C3, is shown in complex with compstatin (yellow stick model). Both inhibitors bind to a site (shaded in blue) formed by the macroglobulin

domains 4 and 5 (MG4, MG5). All illustrations were prepared with PyMOL (148).

treatment with complement inhibitors is limited to a few
published cases reporting the use of eculizumab, a humanized
monoclonal antibody that inhibits cleavage of C5 by C5
convertase, as rescue therapy. The first report came from
Sweden; a young 16-year-old white male with biopsy-proven
crescentic IgAN had failed to respond to corticosteroids and
mycophenolate but stabilized when treated with eculizumab,
although the therapeutic effects were not sustained (141).
Similarly, another 16-year-old male with crescentic IgAN who
had failed treatment with corticosteroids, cyclophosphamide,
and plasma exchange subsequently had transient improvement
in renal function with eculizumab (142). Knowing the role
of complement in IgAN pathophysiology, and encouraged
by these anecdotal therapeutic results, Herzog et al. used
eculizumab as a rescue therapy in a 28-year-old male with

post-transplant recurrent crescentic IgAN. The attempt to
salvage the allograft failed but therapy was instituted after
the initiation of dialysis and hence may have been too late
(143). In a series of elegant experiments, Zhang et al. showed
that antagonists of the receptors for C3 and C5 prevented
proliferation of cultured human mesangial cells stimulated
by IgA and reduced up-regulation of IL-6 and monocyte
chemoattractant protein 1 (MCP-1) (144). In an experimental
model of IgAN, mice deficient for C3 and C5 receptors had
less proteinuria, mesangial IgA deposition, mesangial matrix
expansion and hypercellularity than normal mice, but serum
creatinine and blood urea nitrogen levels were similar. These
experiments suggest that perhaps inhibition of receptors for
C3 and C5 may be promising therapeutic interventions in the
future (144).
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Elucidating the role of activation of the MBL and alternative
pathways in the pathophysiology of IgAN has identified new
potential treatment targets. While some therapies (such as
eculizumab and CCX168) may be non-specific inhibitors of
the distal common pathway, others target a specific pathway
more proximally (Figure 2). Inhibition of complement activation
can be achieved with monoclonal antibodies, small molecules,
and short peptides that block protein-complex formation
and/or enzymatic activity. Eculizumab, a monoclonal humanized
antibody, binds to complement protein C5 at the level of
macroglobulin domain 7 (MG7), thus blocking cleavage of C5
by C5 convertase into pro-inflammatory components C5a and
C5b (Figure 3A). C5a binds to the membrane-associated C5a
receptor (C5aR) via the C-terminal C5a pentapeptide. CCX168
(Avacopan), a small molecule antagonist of the inflammatory
response, binds to the surface of C5aR, thereby blocking C5a
binding through allosteric effects on the C5a-binding pocket
(Figure 3B). Compstatin, a cyclic tridecapeptide, and APL-2,
a pegylated derivative of compstatin, inhibit the activation of
C3 (Figure 3C). MASP-2 complement control protein (CCP)
domain binds to C4. Upon association with MASP-2, C4
undergoes a conformational change whereby the scissile bond-
containing R-loop is inserted into the catalytic site of the
serine-protease domain. Cleavage yields fragments C4a and
C4b. Monoclonal antibody OMS721 binds to a CCP domain
of MASP-2, inhibiting the lectin pathway by blocking complex
formation (Figure 4A). In the alternative pathway, FB binds
to C3b displacing the N-terminal CCP domains. This in turn
leads to rearrangement of the central helices and release of the
scissile bond for proteolytic activation (Figure 4B). LNP023, an
orally available small molecule, interferes with the alternative
complement cascade by inhibition of the proteolytic activity
of FB.

To date, clinical trials in the treatment of IgAN using
surrogate end-points, such as doubling of serum creatinine,
have been limited due to the variable course and often slowly
progressing nature of the disease. The size and cost of such
trials has been relatively prohibitive so far. More recently,
and with guidance from the Unites States Food and Drug
Administration, there has been renewed interest in testing
novel therapies using “reasonably likely” surrogate end-points
(such as quantitative proteinuria) that could lead to accelerated
conditional drug approval (151). This change in policy has
sparked the initiation of multiple clinical trials evaluating the
benefits of various inhibitors of the complement cascade in
IgAN (Table 1). Besides evaluating their efficacy, we need to
assess the risks associated with the use of these drugs, infections
being the primary concern. Very limited data regarding the
safety of these inhibitors are available in the literature. In part,
our understanding about the risks of drugs that interfere with
the complement system comes from syndromes of congenital
complement deficiencies. Observations that the infection rates
in these children decreases as they age suggest that the role
of the innate immunity becomes less prominent in the setting
of maturing adaptive immunity (152). The risk of infection
also depends on the level of pathway inhibition. While C5
inhibitors increase primarily the risk of neisserial infections, C3

FIGURE 4 | Targets and therapeutic agents of the lectin and alternative

complement-activation pathways. (A) The crystal structure of the C4/MASP-2

complex is shown (PDB ID: 4FXG) (149). MASP-2 complement control protein

(CCP) domains bind to C4. Upon association with MASP-2, C4 undergoes a

conformational change whereby the scissile bond containing R-loop is

inserted into the catalytic site of the serine-protease (SP) domain (pale cyan

with catalytic triad in magenta). Cleavage yields fragments C4a and C4b.

Monoclonal antibody OMS721 binds to a CCP domain of MASP-2, inhibiting

the lectin pathway by inhibiting complex formation. (B) The structure of factor

B is shown (PDB ID: 2OK5) (150). Upon C3b binding, the N-terminal CCP

domains are displaced, leading to rearrangement of the central helices and

release of the scissile bond for proteolytic activation. LNP023 inhibits the

proteolytic activity of factor B.

inhibitors are likely to confer a broader infectious susceptibility
warranting vaccination against several encapsulated organisms.
However, even inhibitors like compstatin do not completely
abrogate complement-mediated immunity against pathogens
as even modest residual complement activity seems to be
protective (55). Other theoretical safety concerns come from
the observation that some classical complement deficiencies
increase the risk of developing SLE, hence raising the concern
for developing autoimmunity with complement inhibition
(55). Perhaps the most information about drug safety comes
from the use of eculizumab treatment that substantially
increases the risk of infections with encapsulated organisms.
In particular, the rate of meningococcal infection increases
by 1,000-fold compared to that in the general population. It
is recommended that patients contemplating treatment with
eculizumab receive meningococcal vaccine at least 2 weeks
prior to therapy initiation. Vaccination has reduced the risk
of meningitis by 10-fold. If therapy is initiated prior to 2
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TABLE 1 | Registered clinical trials of complement inhibitors being tested for the treatment of patients with IgAN.

Drug Type Target Trial ID Phase Sponsor

APL-2 Inhibitor C3 Phase 2 study assessing safety and efficacy of

APL-2 in glomerulopathies

NCT03453619 2 Apellis Pharmaceuticals

LLC.

CCX168 Receptor

antagonist

C5a

receptor

Open-label study to evaluate safety and

efficacy of CCX168 in subjects with IgAN on

stable RAAS blockade

NCT02384317 2 ChemoCentryx

LNP023 Inhibitor Factor B Study of the safety and efficacy of LNP023 in

patients with kidney disease caused by

inflammation

NCT03373461 2 Novartis

Pharmaceuticals

OMS721 mAb MASP-2 Safety study of IgAN, lupus nephritis,

membranous nephropathy and C3

glomerulopathy including dense deposit

disease treated with OMS721

NCT02682407 2 Omeros Corporation

Study of the safety and efficacy of OMS721 in

patients with IgAN

NCT03608033 3

Data from https://ClinicalTrials.gov, accessed on December 2, 2018. IgAN, IgA nephropathy;

RAAS, renin angiotensin aldosterone system;

ID-ClinicalTrials.gov identifier.

weeks from the time of vaccination, antibacterial prophylaxis
is recommended (153). Ultimately, the duration and extent of
complement inhibition will also play a role in the safety of
treatment. Several of these therapeutic agents are also being
evaluated in a variety of other disorders ranging from atypical
hemolytic uremic syndrome to age-related macular degeneration
to various glomerulonephritides such as lupus nephritis and
membranous nephropathy. The cumulative experience from all
these trials will inform our future use of complement inhibitors
in IgAN.

CONCLUSION

In the past several decades, much progress has been made in
understanding the role of the complement system in IgAN
pathogenesis and prognosis. Data from studies of the pathology
features, biochemistry of IgA1, and genetic influences on
the disease and animal models confirm the involvement of
the alternative and lectin pathways. Markers of complement
activation are not only diagnostic but are also emerging as
prognostic tools to risk-stratify disease severity. Complement
components likely play significant roles in amplifying the

inflammatory response for formation of immune complexes and
their deposition in the glomerular mesangium. These findings
have sparked marked interest in targeting the complement
cascade at multiple levels in an effort to halt or slow the
disease progression. Much remains to be learned about the
optimal timing and intensity of use of complement inhibitors
and their efficacy and safety in the treatment of patients
with IgAN.
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