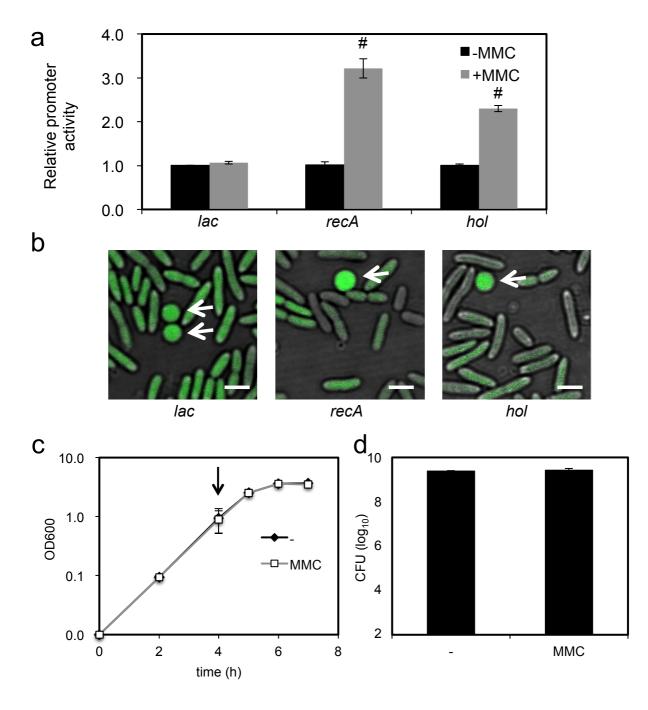
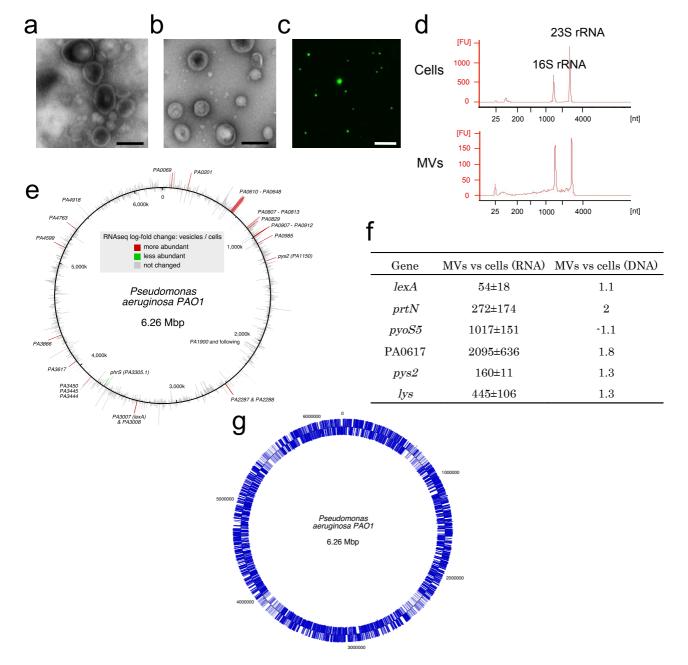

Supplementary Figure 1. Explosive cell lysis is a conserved phenotype in *P. aeruginosa* (a) Proportions of cells with round cell morphotypes in interstitial biofilm monolayers of laboratory and clinical *P. aeruginosa* strains. Computer vision was used to identify cells in 60 random images of each strain of *P. aeruginosa* (except PAK, 111 images) and characterize these as having either rod or round morphotypes. The total number of cells detected for each strain was; PAK 161628, PAO1 114559, PA14 118997, PA103 89323, ATCC27853 94866, CF57 122407, CF219 116836, CF227 98526, CF497 97103, CF581 105114, CLIN66 91460, CLIN67 57126. (b) eDNA sites in interstitial biofilms of *P. aeruginosa* strains.


Supplementary Figure 2. Lys activity is required for cell lysis (a) Hol, Lys and Lys* were separately or jointly expressed in *E. coli* BL21(DE3). Cell lysis was induced by expressing both Hol (holin) and Lys (endolysin). Lys*, which carries a point mutation in the active site of the enzyme, did not induce cell lysis. Following 1h of incubation, expression of genes was induced by the addition of 0.1mM IPTG and 0.5% arabinose. Representative data of two independent experiments are shown. (b) Lys and Lys* expression levels are indistinguishable. Lys and Lys* were His tagged and their expression levels in the PAO1 Δ *lys* mutant background were determined by Western blotting using anti-His antibodies. Samples were taken at the time point when MVs were collected. 2.5 µg of protein was used for SDS-PAGE.

а	b			
a atta	PA14 G	ene PAO1 Orth	tholog Description	
	PA14_0	7980 PA061	13 conserved hypothetical protein	
	PA14_0	8010 PA061	16 putative baseplate assembly protein V	
CAR AND	PA14_0	8030 PA063	30 hypothetical protein	
	PA14_0	8040 PA061	19 putative phage tail protein	
	PA14_0	8050 PA062	20 putative tail fiber protein	
、神影活気になった。	PA14_0	8060 PA062	21 putative tail length determinator protein	
·新和范治区(1)注义下	PA14_0	8070 PA062	22 putative tail fiber assembly protein	
	PA14_0	8090 PA062	23 putative phage tail tube protein	
	PA14_0	8100 PA064	40 putative phage tail assembly protein	
	PA14_0	8120 PA063	36 putative tail length determination protein	
	PA14_0	8130 PA061	18 putative phage baseplate assembly protein	
	PA14_0	8180 PA061	15 conserved hypothetical protein	
	PA14_0	8210 PA063	33 putative major tail protein V	
1	PA14_0	8220 PA063	34 hypothetical protein	
	PA14_0	8230 PA062	26 putative tail formation protein	
đ.	PA14_0	8240 PA064	47 conserved hypothetical protein	
190 ×	PA14_0	8260 PA063	38 putative minor tail protein L	
	PA14_0	8270 PA062	24 conserved hypothetical protein	
	PA14_0	8280 PA063	35 hypothetical protein	
*	PA14_0	8300 PA064	41 putative phage-related protein, tail compone	ent
* <u>}</u>	PA14_0	8330 PA064	48 hypothetical protein	
20 Jun	PA14_0	8320 PA063	39 conserved hypothetical protein	


Supplementary Figure 3. Pyocin structural genes are not required for eDNA release in interstitial biofilms. (a) Phase-contrast (top) and TOTO-1 stained eDNA (green, bottom) of interstitial biofilms of *P. aeruginosa* strain PA14. (b) Table showing PA14 mutants of pyocin structural genes examined for defects in eDNA release in interstitial biofilms. No defects were identified in any of the mutants indicating that the production of pyocins *per se* is not required for eDNA release through explosive cell lysis.

Supplementary Figure 4. Lys is required for microcolony formation in submerged biofilms. (a) Microcolonies in 8 h submerged biofilms of *P. aeruginosa* strain PAO1. Representative phase contrast (top) and eDNA (TOTO-1, bottom) images, scale bar 10 μ m. (b) Microcolonies in 8 h submerged biofilms of PAO1 and PAO1 Δ lys containing vector control (pJN105) or complementation plasmid (pJN105*lys*). Representative phase contrast (top) and eDNA (EthHD-2, bottom) images, scale bar 10 μ m. Inset shows magnified view of round cell at arrow-head.

Supplementary Figure 5. Induction of *recA* and *hol* expression by MMC. (a) Promoter activities of transcriptional fusions to *eGFP* present on plasmids pMLAC-G, pMRECA-G and pM0614-G in *P. aeruginosa* PAO1 cultures were determined. Data represent relative eGFP fluorescence of cultures treated with 200 ng mL⁻¹ MMC normalized against non-treated cultures. Values indicate the mean \pm s.d. of three replicates. # *P* < 0.0005 versus MMC non-treated cultures (Student's *t* test). (b) *lacZ*, *recA* and *hol* promoter expression in induced cells. Arrows indicate rounded cells that express *eGFP*. Exponentially grown cells were treated for 1.5 h with MMC (200 ng mL⁻¹) in liquid culture, and further incubated for 1.5 h on a 0.5% agarose pad supplemented with LB and MMC (200 ng mL⁻¹); scale bar, 2 µm. (c) and (d) Bacterial growth was unaffected when cells were grown in the presence of 200 ng mL⁻¹MMC. (c) Growth curves indicating the time points when MMC (200 ng mL⁻¹) was added (arrow). (d) CFUs of the cultures after 7h of growth in absence or presence of MMC (200 ng mL⁻¹). MMC was added at the same time point as (c). Values indicate the mean ± s.d. of three replicates.

Supplementary Figure 6. DNA and RNA associated with MVs derived from *P. aeruginosa*.

Transmission electron micrograph (TEM) of MVs collected from a stationary phase (a) and a MMC (b) treated P. aeruginosa PAO1 culture, scale bar, 100 nm. (c) Epifluorescence micrograph of purified MVs stained with SYTO RNASelect Green, scale bar, 10 µm. (d) The 23S and 16S rRNAs associated with MVs appear to be intact. The quality of the RNA collected from planktonic cells and purified MVs were analyzed with Agilent BioAnalyzer. The large peaks correspond to 16S rRNA and 23S rRNA. (e) Distribution of RNA-Seq reads of transcripts associated with MVs compared with transcripts of planktonic cells. The log-fold-changes of reads per transcript are plotted with respect to genomic location, with transcripts enriched in MVs pointing outwards and transcripts enriched in planktonic cells pointing inwards. More abundant transcripts associated with MVs are indicated in red and the less abundant transcript (*phrS*) is indicated in green. Differential abundance was determined as described in the Methods ("Illumina sequencing of RNA and DNA extracted from MVs"). (f) Table showing validation of the RNA-Seq data by qPCR of RNA isolated from purified MVs. Several transcripts that showed increased abundance in MVs relative to planktonic cells in the RNAsequencing analysis were selected and their expression levels were validated by qPCR. The rpoD transcript was used for data normalization. The corresponding DNA was also analyzed as a control. Values indicate the mean fold-change \pm s.d. of three replicates. (g) Distribution of DNA-seq reads of DNA associated with purified MVs. Log(RPKM) values are plotted with respect to genomic location, with the + strand on the outside and the - strand on the inside.

PAO1 recA '-' egfp PAO1 lys '-' egfp

Supplementary Figure 7. Heterogeneous expression of SOS-regulated genes in a transcriptional single copy *eGFP* fusion strain. *eGFP* was transcriptionally fused to the 3'-end of *recA* and *lys* and integrated as single copy in the genome of *P. aeruginosa* PAO1. Planktonic cells were cultured under non-inducing conditions and examined with fluorescence microscopy. Arrow indicates cells with high levels of GFP expression showing heterogenous expression of *recA* and *lys*. These singly copy transcriptional fusions confirm the results obtained with the plasmid-based reporters shown in Fig. 7. However, the plasmid-born fusions gave rise to a much stronger fluorescent signal than the respective chromosomal fusions, scale bar, 5µm.

Strain, plasmid	Relevant characteristics	Source or reference
Strains		
E. coli		
K12 BW25113	$lacl^{q}$, rrnB _{T14} , $\Delta lacZ_{WJ16}$, $hsdR514$, $\Delta araBAD_{AH33}$, $\Delta rhaBAD_{LD78}$	Keio Library
DH5a	<i>E. coli</i> strain for transformation (F ⁻ , <i>lacZ</i> Δ M1, <i>recA1</i>)	TaKaRa
S17-1	Mobilizer strain	1
BL21(DE3)	F , <i>ompT</i> , <i>hsdS</i> _B ($r_B m_B$), <i>gal</i> , <i>dcm</i> , (DE3)	TaKaRa
P. aeruginosa	X7/1 L	
PAK	Wildtype	John Mattick, University of Queensland
PA14	Wildtype	Frederick Ausubel, Harvard University
PAO1 PAO1 Nott	Wildtype also referred to as MPAO1 Wildtype isogenic parent strain of PAO1 <i>pasA</i>	Colin Manoil, University of Washington
PAO1_Nott PA103		Paul Williams, University of Nottingham
ATTC27853	Wildtype Wildtype	ATCC ATCC
CF57	CF isolate	David Armstrong, Monash Children's Hospita
CF37 CF219	CF isolate	David Armstrong, Monash Children's Hospita
CF227	CF isolate	David Armstrong, Monash Children's Hospita
CF497	CF isolate	David Armstrong, Monash Children's Hospita
CF581	CF isolate	David Armstrong, Monash Children's Hospita
CLIN66	Endotracheal aspirate	Peter Midolo, Monash Medical Centre
CLIN67	Chest fluid	Peter Midolo, Monash Medical Centre
PAO1 <i>\DelarecA</i>	recA deletion mutant of PAO1	This study
PAO1 <i>Δlys</i>	PA0629 deletion mutant of PAO1	This study
$PACI \Delta lys$ PAK Δlys	PA0629 deletion mutant of PAK	This study
ΡΑΚΔ <i>ιγs</i> ΡΑΟ1ΔΡΑ0620	PA0629 deletion mutant of PAO1	This study
	PA0620 deletion mutant of PA01 PA0622 deletion mutant of PA01	This study
PAO14PA0622	PA0622 deletion mutant of PA01 PA0641 deletion mutant of PA01	2
PAO1ΔPA0641		This study This study
PAO1::recA'-'eGFP	Genomic transcriptional fusion of <i>eGFP</i> to <i>recA</i> Genomic transcriptional fusion of <i>eGFP</i> to PA0629	This study This study
PAO1::lys'-'eGFP	1	This study
PAO1 <i>pqsA</i>	pqsA deletion mutant of PAO1_Nott	2 3
PA14_51430 PA14_08040	PA14_51430::MAR2xT7; pqsA PA14_08040::MAR2xT7; putative phage tail protein	3
PA14_08050	PA14_08050::MAR2xT7; putative pilage tail protein	3
PA14_08300	PA14_08050::MAR2x17; putative phage-related protein, tail component	3
PA14_08090	PA14_08090:::MAR2x17; putative phage-telated protein, tail component PA14_08090:::MAR2xT7; putative phage tail tube protein	3
PA14_08210	PA14 08210::MAR2xT7; putative major tail protein V	3
PA14_08260	PA14_08260::MAR2xT7; putative minor tail protein L	3
PA14 08220	PA14 08220::MAR2xT7; hypothetical protein	3
PA14 08010	PA14 08010::MAR2xT7; putative baseplate assembly protein V	3
PA14 08330	PA14 08330::MAR2xT7; hypothetical protein	3
PA14 07980	PA14 07980::MAR2xT7; conserved hypothetical protein	3
PA14 08180	PA14 08180::MAR2xT7; conserved hypothetical protein	3
PA14 08030	PA14 08030::MAR2xT7; hypothetical protein	3
PA14 08130	PA14 08130::MAR2xT7; putative phage baseplate assembly protein	3
PA14_08230	PA14_08230::MAR2xT7; putative tail formation protein	3
PA14_08280	PA14_08280::MAR2xT7; hypothetical protein	3
PA14_08100	PA14_08100::MAR2xT7; putative phage tail assembly protein	3
PA14_08270	c PA14_08270::MAR2xT7; conserved hypothetical protein	3
PA14_08320	PA14_0832::MAR2xT7; conserved hypothetical protein	3
PA14_08240	PA14_08240::MAR2xT7; conserved hypothetical protein	3
PA14_08120	PA14_08120::MAR2xT7; putative tail length determinator protein	3
PA14_08060	PA14_08060::MAR2xT7; putative tail length determinator protein	3
PA14_08070	PA14_08070::MAR2xT7; putative tail fiber assembly protein	3
Plasmids		
pUCPSK	<i>E. coli-Pseudomonas</i> shuttle vector, Ap^{R}	4
pUCPKS	<i>E. coli-Pseudomonas</i> shuttle vector, Ap^{R}	4
pmCherry-C2	Source of mCherry fluorescent protein gene (<i>mCHFP</i>)	CLONTECH
pUCPCFP	<i>ecfp</i> sub-cloned into pUCPSK	5
pUCPmChFP	<i>mChFP</i> from pmCherry-C2 sub-cloned into pUCPKS	This study
pUC19	Cloning vector, Ap ^r	TakaRa
pJN105	Broad host range arabinose inducible gene expression vector	6
pET21b	Expression vector, Ap ^r	Novagen
pJN105 <i>lys</i>	Arabinose inducible Lys-His expression vector	This study
pJN105lys*	Arabinose inducible Lys*-His expression vector, Lys catalytic site	This study
	mutated	-
pET21b_hol	Hol-His expression vector	This study
pG19II	pK19mobsac derived suicide vector; sacB Gmr	7
pG19recA	recA deletion cassette in pG19II	8
pG19PA0629	PA0629 deletion cassette in PG19II	This study
pG19PA0620	PA0620 deletion cassette in PG19II	This study
pG19PA0622	PA0622 deletion cassette in PG19II	This study
pG19PA0641	PA0641 deletion cassette in PG19II	This study
pG19_recA'-'eGFP	recA'-'eGFP transcriptional fusion cassette in pG19II	This study
pG19_lys'-'eGFP	PA0629'-'eGFP transcriptional fusion cassette in pG19II	This study
pEGFP	Plasmid harboring <i>eGFP</i>	CLONTECH
pMEXGFP	pMEX9 derived promoter-probe vector; eGFP, Gm ^r	8
pMLAC-G pMRECA-G	<i>lac</i> promoter region fused to <i>eGFP</i> in pMEXGFP <i>recA</i> promoter region fused to <i>eGFP</i> in pMEXGFP	This study This study

Supplementary Table 1. Strains and plasmids used in this study.

Supplementary Table 2. Primers used in this study.

Primers	Sequence $5' \rightarrow 3'$ (restriction enzyme sites are underlined)		
Gene deletion	• • • • • • • • • • • • • • • • • • • •		
ΔPA0620 F1	CCTAAGCTTGGGCTGCGAAGTGCTGATCAGCGTGCTCG		
ΔPA0620 R1	CGGGATCCGGGCAGGCCACCGTATTTCGGAGTATTGGTCG		
ΔPA0620 F2	CGGGATCCGAGGTGATTCGCAATGGCTACTTTGCTCAGGC		
ΔPA0620 R2	GCTCTAGAGGCTGGGCATTGAAGCGACTCTTGCCGTCG		
ΔPA0622 F1	CCTAAGCTTGGGCCACCATCCGCACATAACCATGACGTCG		
$\Delta PA0622$ R1	CGGGATCCGTAGGTAGATCTCCATTAATGAAAAACCCCGCACG		
ΔPA0622_F2	CGGGATCCGGCAGTGGCTCACCGAAGTTCTGGATGTCGC		
ΔPA0622_12 ΔPA0622_R2	GCTCTAGAGGCGGTTCGTCTCGTCTGTTATCGATGTCCG		
ΔPA0629 F1	CCCAAGCTTGGTGCAACCGAGTTTCCGTATCGTTGCCGACG		
$\Delta PA0629_R1$			
—	CG <u>GGATCC</u> GGCGATCCTCCTGCACTCCGATGGGTTTCAG		
ΔPA0629_F2	CG <u>GGATCC</u> TGCGGTCACGGGCTCAACGAGCTGGC		
$\Delta PA0629_R2$	GC <u>TCTAGA</u> GTGTTGAACGAGGTCACGCCTTCGATCTCCAG		
ΔPA0641_F1	GCAACTGCAGCTGGCATCTACCTGGGCAATGACTGGCG		
$\Delta PA0641_R1$	GC <u>TCTAGA</u> GGTCGTGATGGTCTTGTTCATGACGTTCCTTCAGGC		
$\Delta PA0641_F2$	GC <u>TCTAGA</u> GGAGCAGGCCAGGTCAGAGTTGAGATGGG		
ΔPA0641_R2	CG <u>GGATCC</u> GGCGCTTCGGAATTCAGCGTGACGGAAACCG		
GFP genomic fusion			
recAG_F1	G <u>GAATTC</u> CGTCGAGATCTACGGTCCGGAATCC		
recAG_R1	CGC <u>CTCGAG</u> TCAATCGGCTTCGGCGTCAGCC		
recAG_F2	G <u>ACTAGT</u> GGAGGCCAATGGCGATCGTGCTCGATAC		
recAG R2	GCTCTAGACGCCCAGTTCTACCGCAACTTCCAC		
0629G F1	GGAATTCAGCCTGCTGCTCCAAGGCTTCAAGG		
0629G R1	CGCCTCGAGTCATACAGCACCGCCCTGGCC		
0629G F2	GACTAGTGGAGGTTCCATGAGCCGGCTCGCTCTGCTCC		
0629G R2	GCTCTAGACCCGAGCCGTTGTCGGATGCAAAC		
egfp F2	CGCCTCGAGGGAGGTCCATGGTGAGCAAGGGCGAGGAGCTGTTC		
egfp R2	GACTAGTTTACTTGTACAGCTCGTCCATGCCGAGAG		
Promoter assay	<u>Greener</u> interformenderedreendeedkond		
pLac F	CGGAATTCTGTTCTTTCCTGCGTTATCC		
• –	CGGGATCCGCTGTTTCCTGTGTGAAATTG		
pLac_R			
pRecA_F	CG <u>GGATCC</u> GGAAGTGGTCGAGGCCATGGTGC		
pRecA_R	CGC <u>AAGCTT</u> CGAGGATTCCGGACCGTAGATCTCG		
Expression plasmids			
PA0629AA_F	GAGGTCAAGAGCGTCGAGTTGAAGAACC		
PA0629_E51V_F	GTCGGCCACGTAAGCAGCCAGTTGAC		
PA0629-E51V_R	CCGGGTCAACTGGCTGCTTACGTG		
cPA0629H_F	CT <u>GAATTC</u> CTGAAACCCATCGGAGTGCAGGAGGATCG		
cPA0629H_R	CC <u>TCTAGA</u> TCAGTGGTGGTGGTGGTGGTGTGACAGCACCGCCCTGGC		
PA0614b_F	GATTCGA <u>CATATG</u> AAGCACCGGAACCCGGCCCTG		
PA0614b_R	CCG <u>CTCGAG</u> ATGCGGGCCACGGTCGTCCG		
mCherry_F	ATA <u>GCATGC</u> TGAGCAAGGGCGAGG		
mCherry_R	CGC <u>AAGCTT</u> ACTTGTACAGCTCGTCC		
qPCR primers			
prtN (PA0610)_F	ATTGGTCTACCGCATCTTCG		
prtN (PA0610) R	TGCATGGCCTTGTGACTATC		
lexA (PA3007) F	AAGCCGAGATCCTCTCCTTC		
lexA (PA3007) R	CCGGAGTCATTTCGATGG		
pyoS5 (PA0985) F	AACTGGAGCGGGACTACAGA		
pyoS5 (PA0985) R	TGCTTGCGTAACCAGTCTTG		
PA0617 F	GGCCTGGCTCATCTTAAACA		
PA0617 R	TTTCCAGCCTTCGCTCAC		
pys2 (PA1150) F	ACGGCTTCAGACTTTCCTCA		
	AGATAGCGATTTGCGCCTTA		
pys2 (PA1150)_R			
PA0614_F	CGCTCTGGGTACTGATCCTG		
PA0614_R	CGTTCGTAGAGACCGACTGC		
PA0629_F	GACGAGAGGGAGATCGACAC		
PA0629_R	GTAGGTGTTGTCGGCAATCG		
PA0576_F PA0576_R	CATCGCCAAGAAGTACACCA		
	GCGACGGTATTCGAACTTGT		

Supplementary References

- 1 Simon, R., O'Connell, M., Labes, M. & Pühler, A. Plasmid vector for the genetic analysis and manipulation of rhizobia and other gram-negative bacteria. *Methods Enzymol* **118**, 640-659 (1986).
- 2 Aendekerk, S. *et al.* The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in *Pseudomonas aeruginosa* via 4-quinolone-dependent cell-to-cell communication. *Microbiology* **151**, 1113-1125 (2005).
- 3 Liberati, N. T. *et al.* An ordered, nonredundant library of *Pseudomonas aeruginosa* strain PA14 transposon insertion mutants. *Proc Natl Acad Sci USA* **103**, 2833-2838 (2006).
- 4 Watson, A. A., Alm, R. A. & Mattick, J. S. Construction of improved vectors for protein production in *Pseudomonas aeruginosa*. *Gene* **172**, 163-164 (1996).
- 5 Gloag, E. S. *et al.* Self-organization of bacterial biofilms is facilitated by extracellular DNA. *Proc Natl Acad Sci USA* **110**, 11541-11546 (2013).
- 6 Newman, J. R. & Fuqua, C. Broad-host-range expression vectors that carry the Larabinose-inducible *Escherichia coli araBAD* promoter and the *araC* regulator. *Gene* **227**, 197-203 (1999).
- 7 Maseda, H. *et al.* Enhancement of the *mexAB-oprM* efflux pump expression by a quorum-sensing autoinducer and its cancellation by a regulator, MexT, of the *mexEF-oprN* efflux pump operon in *Pseudomonas aeruginosa. Antimicrob Agents Chemother* **48**, 1320-1328 (2004).
- 8 Toyofuku, M. *et al.* Membrane vesicle formation is associated with pyocin production under denitrifying conditions in *Pseudomonas aeruginosa* PAO1. *Environ Microb* 16, 2927-2938 (2014).