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A B S T R A C T

Background: Regarding the analysis of RCT data there is a debate going on whether an adjustment for the
baseline value of the outcome variable should be made. When an adjustment is made, there is a lot of mis-
understanding regarding the way this should be done. Therefore, the aims of this educational paper are: 1) to
explain different methods used to estimate treatment effects in RCTs, 2) to illustrate the different methods with a
real life example and 3) to give an advise on how to analyse RCT data.
Methods: Longitudinal analysis of covariance, repeated measures analysis in which also the baseline value is
used as outcome and the analysis of changes were theoretically explained and applied to an example dataset
investigating a systolic blood pressure lowering treatment.
Results: It was shown that differences at baseline should be taken into account and that regular repeated
measures analysis and regular analysis of changes did not adjust for the baseline differences between the groups
and therefore lead to biased estimates of the treatment effect. In the real life example, due to the differences at
baseline between the treatment and control group, the different methods lead to different estimates of the
treatment effect.
Conclusion: Regarding the analysis of RCT data, it is advised to use longitudinal analysis of covariance or a
repeated measures analysis without the treatment variable, but with the interaction between treatment and time
in the model.

1. Introduction

Within epidemiology a randomised controlled trial (RCT) is con-
sidered to be the best way to investigate the effect of a new treatment.
Regarding the analysis of RCT data there is a debate in the epidemio-
logical and biostatistical literature, whether an adjustment for the
baseline value of the outcome variable should be made [1–6]. Re-
searchers against this adjustment argue that all differences at baseline
between the two groups are due to chance and an adjustment for
chance is not correct. Researchers in favour of the adjustment argue
that an adjustment is necessary to take into account regression to the
mean [7–10]. When differences at baseline between the treatment and
control group are due to random fluctuations and measurement error,
there is a tendency of the average value to go down in the group with
the initial highest average value and to go up in the group with the
initial lowest average value. This tendency is known as regression to the
mean. Suppose that we are performing an intervention study aiming to
improve physical activity among children, and that the intervention has
no effect at all. Suppose further that at baseline the intervention group
has a lower average physical activity level compared to the control

group. When no adjustment is made for the baseline differences in the
outcome variable, in this particular situation, an artificial intervention
effect will be estimated. Due to regression to the mean, the average
value of the intervention group tend to increase, while the average
value of the control group tend to decrease, leading to this artificial
intervention effect. When the control group has the higher average
value at baseline, the exact opposite occurs: if there is an actual treat-
ment effect in this situation, it will be underestimated due to regression
to the mean. In an RCT, regression to the mean can play a major
(confounding) role, because the two groups are randomised from one
source population. The consequence of this is that they are expected to
have the same average baseline value, i.e. the differences between the
two groups at baseline are completely due to random fluctuations and
measurement error.

Although it seems that the debate is ended in favour of an adjust-
ment for baseline value of the outcome variable, in the literature there
are still many RCT's that do not adjust for the baseline values of the
outcome variable [11]. Moreover, in the CONSORT statement, which
provides guidelines for reporting results of RCTs, there is no statement
about the preferred way of analysing RCT data and whether or not an
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adjustment for the baseline value should be made.
When an adjustment is made for the baseline value of the outcome

variable, there is a lot of misunderstanding regarding the best way of
performing this adjustment. Therefore, the aims of the present educa-
tional paper are: 1) to explain different methods used to estimate
treatment effects in RCTs, 2) to illustrate the different methods with a
real life example and 3) to give an advise on how to analyse RCT data.

2. Methods

2.1. Different methods

The following three statistical methods are mostly used to estimate
treatment effects in RCTs: longitudinal analysis of covariance (method
1), repeated measures analysis (method 2) and the analysis of changes
(method 3). In the explanation of the different methods, two follow-up
measurements are considered. However, the methods can be easily
extended with more follow-up measurements.

2.1.1. Method 1: Longitudinal analysis of covariance
Table 1 shows the structure of the data used to estimate the para-

meters for a longitudinal analysis of covariance.
In this method the outcome variable measured at the different

follow-up measurements is adjusted for the baseline value of the out-
come (equation (1a)).

= + +Y β β X β Yt t0 1 2 0 (1a)

where, Yt= the outcome measured at the two follow-up measurements,
X= treatment variable, β1=overall treatment effect and
Yt0=outcome variable measured at baseline.

To assess the effect of the treatment at the different follow-up
measurements, time and the interaction between the treatment variable
and time are added to the model (equation (1b)).

= + + + + ×Y β β X β Y β time β X timet t0 1 2 0 3 4 (1b)

In this model, the regression coefficient for the treatment variable
reflects the treatment effect at the first follow-up measurement. The
treatment effect at the second follow-up measurement is calculated as
the sum of the regression coefficient for the treatment variable and the
regression coefficient for the interaction between the treatment variable
and time (β1 + β4).

2.1.2. Method 2: Repeated measures
Table 2 shows the structure of the data used to estimate the para-

meters of a repeated measures analysis.
In the repeated measures analysis, the values of all three measure-

ments of the outcome variable (i.e. the baseline value as well as the two
follow-up measurements) are used as outcome in the analysis. The
model includes time, which is either continuous when a linear

development over time is assumed or represented by dummy variables
when a non-linear development over time is assumed (because all three
measurements are used as outcome, two dummy variables are needed
to represent time) and the interaction between treatment and time
(equations (2a) and (2b)).

= + + + ×Y β β X β time β time Xt 0 1 2 3 (2a)

= + + + + ×

+ ×

Y β β X β dummytime β dummytime β dummytime X

β dummytime X
t 0 1 2 1 3 2 4 1

5 2 (2b)

In model 2a, the regression coefficient for the treatment variable
reflects the differences between the groups at baseline. To obtain the
overall treatment effect over time, time must be coded 1 for both
follow-up measurements. The sum of the regression coefficient for the
treatment variable and the regression coefficient for the interaction
between the treatment variable and time then reflects the overall
treatment effect. In the model with the two dummy variables (equation
(2b)), the treatment effect at the first follow-up measurement is cal-
culated as the sum of the regression coefficient for the treatment vari-
able and the regression coefficient for the interaction between the
treatment variable and the first dummy variable for time (β1 + β4),
while the treatment effect at the second follow-up measurement is
calculated as the sum of the regression coefficient for the treatment
variable and the regression coefficient for the interaction between the
treatment variable and the second dummy variable for time (β1 + β5).

An assumed advantage of repeated measures analysis is that sub-
jects with only a baseline value, but with missing data at all the follow-
up measurements are still part of the analysis. When applying long-
itudinal analysis of covariance (method 1), individuals with only a
baseline measurement are not part of the analysis. Although some re-
searchers claim that the repeated measures analysis takes into account
the differences between the groups at baseline, there is actually no
adjustment for the baseline differences. Therefore, an alternative to
model 2 is developed in which the treatment variable is not part of the
model, but its interaction with time still is (equations (2c) and (2d)).

= + + ×Y β β time β time Xt 0 1 2 (2c)

= + + + ×

+ ×

Y β β dummytime β dummytime β dummytime X

β dummytime X
t 0 1 1 2 2 3 1

4 2 (2d)

Because the treatment variable is not in the model, the baseline
values for both groups are assumed to be equal and are reflected in the
intercept of the model (i.e. β0). The treatment effects can be directly
obtained from the regression coefficients for the interactions between
the treatment variable and time (the overall treatment effect over time;
β2 in equation (2c)) or between the treatment variable and the two
dummy variables for time (treatment effect at the two time-points; β3
and β4 in equation (2d)).

2.1.3. Method 3: Analysis of changes
In the third method, not the actual values at the different time-

points are modelled, but the changes between the baseline measure-
ment and the first follow-up measurement and between the baseline
measurement and the second follow-up measurement (equation (3a)).

− = +Y Y β β Xt t0 0 1 (3a)

Although, it is sometimes suggested that the analysis of changes
takes into account the difference at baseline, this is not the case and
therefore this method can also be performed with an adjustment for the
baseline value of the outcome variable (equation (3b)).

− = + +Y Y β β X β Yt t t0 0 1 2 0 (3b)

As in method 1, the model can be extended with time and the in-
teraction between the treatment variable and time to estimate the effect
of the intervention at the different follow-up measurements (equations

Table 1
Data structure needed to perform a longitudinal analysis of covariance.

id Outcome time Treatment (X) Baseline

1 Yt1 0 1 Yt0

1 Yt2 1 1 Yt0

Table 2
Data structure needed to perform the analyses described in method 2.

Id outcome time treatment baseline

1 Yt0 0 1 Na
1 Yt1 1 1 Na
1 Yt2 2 1 Na

Na=not applicable.
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(3c) and (3d)).

− = + + + ×Y Y β β X β time β X timet t0 0 1 2 3 (3c)

− = + + + + ×Y Y β β X β Y β time β X timet t t0 0 1 2 0 3 4 (3d)

The overall treatment effect and the treatment effects at the two
follow-up measurements can be obtained in the same way as been de-
scribed for the longitudinal analysis of covariance (method 1). Table 3
shows the structure of the data used to estimate the parameters of the
analysis of changes.

2.2. Example dataset

The example dataset is taken from an intervention study in which
the effectiveness of a long-term homocysteine-lowering treatment with
folic acid plus pyridoxine in reducing systolic blood pressure was
evaluated [12]. In this 2-year, randomised, placebo-controlled trial, a
baseline measurement and two follow-up measurements (after 1 and
after 2 years) were performed. At each time-point systolic blood pres-
sure was measured four times and the average value was used in the
analysis.

2.3. Statistical analysis

All statistical analyses were performed with linear mixed models in
STATA (version 14). Linear mixed models was used because in all
methods, an adjustment should be made for the dependency of the
repeated observations within the individual. This adjustment was per-
formed by adding a random intercept to the model [13]. In the illus-
tration, the differences between the groups and the 95% confidence
intervals were calculated.

3. Results

Table 4 shows descriptive information regarding the example used
in the present study. There is a difference between the baseline values
of the two groups, i.e. the treatment group has lower systolic blood
pressure values compared to the control group. Furthermore, the sys-
tolic blood pressure of the treatment group decreases from baseline to
the first follow-up measurement and there is a smaller decrease be-
tween the first to the second follow-up. For the control group there is a
very small decrease from baseline to the first follow-up and a slightly
bigger decrease from the first to the second follow-up measurement.

Table 5 shows the results of the different methods to estimate the
overall treatment effect (i.e. the treatment effect on average over time)
in the example RCT, while Table 6 shows the estimated treatment ef-
fects separately for the two follow-up measurements.

The results of the longitudinal analysis of covariance (method 1)
show an overall treatment effect of −3.7 mmHg; so on average over
time the treatment group has a 3.7mmHg lower systolic blood pressure

compared to the control group. At the two follow-up measurements the
longitudinal analysis of covariance revealed treatment effects of −4.6
and −2.7mmHg respectively. The magnitude of the effect estimated
with longitudinal analysis of covariance is more or less expected given
the difference at baseline between the groups, the influence of regres-
sion to the mean and the observed mean values of systolic blood
pressure at the two follow-up measurements.

From the results it can further be seen that with the repeated
measures analysis (method 2), no adjustment is made for the baseline
differences. Basically the overall effect and the effects at the two follow-
up measurements are comparable to the observed differences in systolic
blood pressure between the groups. This is, however, an overestimation
of the treatment effect. This overestimation is due to: 1) not take into
account regression to the mean, 2) the fact that the control group has
higher blood pressure values at baseline and 3) the fact that blood
pressure decreases over time.

When the treatment group variable is not in the model, actually an
adjustment is made for the baseline differences. However, the results
are slightly different from the results obtained from the longitudinal
analysis of covariance (method 1).

In the present example, the analysis of changes (method 3) lead to
an underestimation of the treatment effect. Because a decrease is harder
to achieve in the treatment group (due to the lower values at baseline),
the observed decrease in the treatment group should be weighted more
heavily than the observed decrease in the control group. Analysing the
change between baseline and the two follow-up measurements ignores
this and therefore, this analysis lead to an underestimation of the
treatment effect. When in the analysis of changes an adjustment is made
for the baseline value, the results are exactly the same as the results of
the longitudinal analysis of covariance (method 1).

4. Discussion

The present educational paper contains an explanation of different
methods to estimate treatment effects in RCTs. Besides that, the

Table 3
Data structure needed to perform the analyses described in method 3.

Id Outcome time treatment baseline

1 Yt1 – Yt0 0 1 Yt0

1 Yt2 – Yt0 1 1 Yt0

Table 4
Descriptive informationa regarding the example dataset.

Baseline T1 T2

Treatment 126.5 (12.5); n= 68 122.6 (11.5); n=63 121.6 (12.3); n= 59
Control 130.7 (17.6); n= 71 130.1 (17.0); n=67 127.2 (14.4); n= 60

a Mean systolic blood pressure and SD between brackets.

Table 5
Overall treatment effect estimated with different methods.

Equation Method Overall treatment effect

(1a) Longitudinal analysis of covariance −3.7 (−6.8 to −0.6)a

(2a) Repeated measuresb −6.2 (−10.7 to −1.7)a

(2c) Repeated measures without treatmentb −3.5 (−6.6 to −0.3)a

(3a) Analysis of changes (not adjusted) −1.9 (−5.5 to 1.8)
(3b) Analysis of changes (adjusted) −3.7 (−6.8 to −0.6)a

a Statistically significant at α=0.05.
b Time recoded to 0 for the baseline measurement and 1 for both follow-up

measurements.

Table 6
Treatment effects at the two follow-up measurements estimated with different
methods.

Equation Method Treatment effect

first follow-up second follow-up

(1b) Longitudinal analysis of
covariance

−4.6 (−8.2 to
−0.95)a

−2.7 (−6.4 to
1.1)

(2b) Repeated measures −7.1 (−12.0 to
−2.2)a

−5.2 (−10.2 to
−0.19)a

(2d) Repeated measures without
treatment

−4.3 (−8.0 to
0.59)

−2.4 (−6.3 to
1.4)

(3b) Analysis of changes (not
adjusted)

−2.7 (−6.9 to
1.4)

−0.83 (−5.1 to
3.4)

(3d) Analysis of changes
(adjusted)

−4.6 (−8.2 to
−0.95)a

−2.7 (−6.4 to
1.1)

a Statistically significant at α=0.05.
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different methods are used to estimate treatment effects of an example
RCT aiming to decrease systolic blood pressure. Due to the observed
differences in the outcome variable at baseline, the results of the dif-
ferent methods were totally different.

Because in the example dataset, the treatment group has a lower
mean blood pressure at baseline, regression to the mean tend to in-
crease blood pressure for the treatment group and tend to decrease
blood pressure for the control group. Because of that, the treatment
effect estimated with the analysis of changes (method 3), leads to an
underestimation of the treatment effect, while the treatment effect es-
timated with the repeated measures analysis (method 2) leads to an
overestimation of the treatment effect. Regarding the adjustment for
the baseline value, it does not matter whether the outcome variable is
the absolute value at the different follow-up measurements (i.e. long-
itudinal analysis of covariance; method 1) or the changes between the
two follow-up measurements and the baseline measurement (i.e. ana-
lysis of changes; method 3); the effect estimates are exactly the same in
both methods. In fact, there is a mathematical equivalence between the
two methods leading to the same estimation of the treatment effect (see
Fig. 1).

Although the general idea is the same, the results of repeated
measures analysis without the treatment variable in the model (equa-
tions (2c) and (2d)) slightly differed from the results of the longitudinal
analysis of covariance (method 1). The advantage of the repeated
measures analysis (method 2) is that also subjects with only a baseline
measurement are included in the analysis, which is not the case in the
longitudinal analysis of covariance (method 1). So, in the present ex-
ample the two analyses are based on a slightly different population.
However, also when the method is used in a dataset without any
missing data, the results of the two methods are not exactly the same.
This is partly caused by the adjustment for the dependency of the re-
peated observations within the individual by adding a random intercept
to the model. In the repeated measures analysis (method 2) using all
three measurements as outcome, this random intercept variance is
much higher than in the longitudinal analysis of covariance (method 1).
In the latter, part of the random intercept variance is explained by the
baseline value of the outcome which is added as an independent vari-
able the model.

Longitudinal analysis of covariance (method 1): Analysis of changes
(method 3):

= + + − = + +Y β β X β Y Y Y β β X β Yt t t t t0 1 2 0 0 0 1 2 0

= + + +Y β β X β Y Yt t t0 1 2 0 0

= + + +Y β β X β Y(1 )t t0 1 2 0

When the equation of analysis of changes is rewritten to define the
outcome Yt, only the regression coefficient of Yt0 changes by a value of
1, the coefficient of the treatment effect and the intercept remain the
same. So whether Yt or Yt - Yt0 is being used as an outcome, all re-
gression coefficients will remain the same except for the coefficient of
Yt0 which will be higher by a value of 1 for the model with outcome Yt

compared to the model with outcome Yt - Yt0.

4.1. Statistical significance of baseline differences

It is often argued that an adjustment for baseline differences is only
necessary when the difference between the groups at baseline is sta-
tistically significant. This is, however, a huge misunderstanding.
Basically, the baseline value of the outcome variable can be seen as a
confounder in the estimation of the treatment effect. A variable is
considered to be a confounder when it is related to both the in-
dependent and the dependent variable in the model. Because in an RCT,
the baseline value of the outcome is highly related to the follow-up
measurements of the same variable, even a small difference in baseline
value of the outcome between the two groups can have a (strong)
confounding effect. Therefore, it is advised always to adjust for the
baseline value of the outcome variable irrespective whether the dif-
ference is significant or not. The issue of statistical significance also
holds for the adjustment for other covariates. Although the adjustment
for other covariates is less important than the adjustment for the
baseline value of the outcome, it can still be important to consider
adjustment for other covariates [14]. When a covariate is related to the
outcome and when that covariate differs between the two groups, the
particular covariate is considered to be a confounder in the estimation
of the treatment effect. Again, note that it is not necessary that the
covariate is significantly related to the outcome or that the covariate is
significantly different between the two groups. Significance does not
play an important role in the magnitude of the influence of the parti-
cular covariate. It is therefore of no use to statistically test for baseline
differences between the treatment and the control group. This testing
nonsense has been noticed by other authors as well [15,16].

4.2. Dichotomous outcomes

When the outcome variable in an RCT is dichotomous, (long-
itudinal) logistic regression analysis is used to estimate treatment ef-
fects. With dichotomous outcomes, mostly an adjustment for baseline
differences in the outcome is not necessary, because at baseline mostly
all individuals are either scoring 1 or 0 (depending on the coding of the
particular outcome). Suppose that one wants to estimate the effect of a
new treatment against hypertension, in the source population all

Fig. 1. Mathematical equivalence between longitudinal analysis of covariance and the analysis of changes with an adjustment for baseline differences.
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subjects must have hypertension. In other words, they all have the same
value of the outcome variable at baseline. When this is not the case, i.e.
when there is a difference in the baseline dichotomous outcome be-
tween the treatment and the control group, the situation is slightly
more complicated than described for continuous outcomes. This has to
do with the fact that in (longitudinal) logistic regression analysis the
effect estimate changes when a variable which is highly related to the
outcome is added to the model. This change is irrespective of the dif-
ference in this variable between the two groups. So when the baseline
values of the two groups are exactly the same and the baseline value is
(highly) related to the outcome, the result of the unadjusted (long-
itudinal) logistic regression analysis will differ from the result of the
adjusted (longitudinal) logistic regression analysis. This phenomenon is
known as non-collapsibility [17–19] and arises from differences in the
total variances between a logistic model with the adjustment of the
particular variable and a logistic model without the adjustment. Basi-
cally the total variance is the summation of explained and unexplained
variance. When a covariate is added to a linear regression model, the
unexplained variance decreases while the explained variance increases
with the same amount. However, in a logistic model, the unexplained
variance is a fixed number. So when a covariate that is related to the
outcome is added to a logistic model which only contains the treatment
variable, the total variance will increase. Because of this increased
variance it is often said that, adding a variable to the logistic model that
is related to the outcome changes the scale on which the regression
coefficients must be interpreted and therefore, they cannot be com-
pared to each other.

This phenomenon, which is not known by most researchers, is il-
lustrated in Fig. 2. In this illustration it can be seen that there is no
difference in baseline values between the treatment and control group.
The crude treatment effect (i.e. without adjusting for the baseline
value) gives an odds ratio (OR) of 5. It can also be seen that the baseline
value is highly related to the outcome variable (the corresponding OR
also equals 5). Because the baseline value is exactly the same for both
the intervention and control group an adjustment for the baseline value
should not change the estimation of the treatment effect. However,
when a logistic regression analysis is performed adjusting for the
baseline value the adjusted OR will be around 6.7; much higher than
the expected OR of 5.

4.3. Observational studies

It should be realised that the adjustment for baseline differences
between groups is only necessary in RCTs. In observational studies
differences at the first measurement between groups mostly reflect real
differences. In observational studies it is, therefore, not advised to ad-
just for the differences between the groups, because then the real dif-
ferences are neglected [20,21]. Surprisingly, in observational studies
the first measurement is also often referred to as the baseline mea-
surement. To avoid confusion and misunderstanding regarding the
adjustment for baseline values within observational studies, it is prob-
ably better to talk about the ‘first measurement’ of an observational
study instead of the baseline measurement. The term baseline mea-
surement should be restricted to RCTs.

4.4. Assumptions

It should be realised that the results of the different methods de-
pends partly on the assumptions made. For instance, the comparison
between the different methods only holds for situations when the var-
iances at the follow-up measurements are more or less the same for both
groups and when the relationship between the baseline value and the
follow-up measurements is more or less equal for both groups. When
this is not the case, it is, for instance, shown that the standard errors
obtained from a longitudinal analysis of covariance (method 1) are
slightly underestimated [5]. Besides that, the comparison between the
different methods is related to the absolute differences in the outcome
variable between the groups. Although this is by far the mostly used
effect estimate, it is not known how the different methods behave when
the effect of the outcome is more relative, i.e. when the effect of the
intervention is proportional to the individual baseline value. Because it
is slightly beyond the scope of the present paper, for more technical
details about the assumptions for the different methods one is referred
to other papers [4–8,22].

It was already mentioned that the adjustment for baseline differ-
ences is only appropriate when the expected values of the baseline
value is the same for both groups. This is the case in an RCT, but not in a
non-randomised trial or an observational study.

Finally, in the mixed model analysis, we only added a random

Fig. 2. Illustration of the problem of non-collapsibility of the OR. a) no differences between intervention and control (OR (intervention/control) = 1).
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intercept to take into account the dependency of the repeated ob-
servations within the subject. We decided not to add random slopes for
the time variable to the models, because firstly time was not present in
all models and secondly, when random slopes are added for the time
dummy variables, it often leads to non-converging models.

5. Conclusion

To estimate a treatment effect in an RCT, the analysis has to be
adjusted for the baseline value of the outcome variable. A proper ad-
justment is not achieved by performing a regular repeated measures
analysis (method 2) or by the regular analysis of changes (method 3). It
is advised to use either a longitudinal analysis of covariance (method 2)
or a repeated measures analysis without the treatment variable, but
with the interaction between the treatment variable and time in the
model.
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