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In this Supplementary Information document we provide a
detailed analysis of some of the technical points of our inves-
tigation.

I. THERMALIZATION PROCESS DURING THE
ISOCHORIC TRANSFORMATIONS

In this Section we study the thermalisation processes in-
herent in the isochoric transformations included in our engine
cycle. The starting state of each transformation corresponds to
a squeezed thermal state of the working medium (a harmonic
oscillator), while the thermalization process itself can be mod-
elled as relaxation induced by a bath at a given operating tem-
perature. Our goal is to show that thermalisation is achieved
within finite-time intervals and that the corresponding irre-
versible entropy produced across such relaxation can be kept
at bay, and considered ineffective for the sake of determining
the efficiency of the engine that we propose. In what follows,
we will make use of the powerful formalism of covariance
states, which is handy given the nature of the states and trans-
formations at hand. The covariance matrix σ of a harmonic
oscillator is defined as σ i j =

1
2 (〈{Q̂i, Q̂ j}〉− 〈Q̂i〉〈Q̂ j〉) with

Q= (q, p) the vector of quadrature operators q̂= (â+ â†)/
√

2
and p̂ = i(â† − â)/

√
2 of the oscillator and {·, ·} the anti-

commutator. Here â (â†) is the annihilation (creation) operator
of a harmonic oscillator.

The covariance matrix of a single mode squeezed thermal
state [1] can be straightforwardly obtained from using the re-
lation S σthS

T with σth = (2m+1)112 the covariance matrix
of a thermal state of mean occupation number m (112 is the
2×2 identity matrix) and

S =

(
e−r 0
0 er

)
(1)

the linear canonical transformation corresponding to the
squeezing operation e

r
2 (â

†2−â2) with r is the squeezing factor.
A harmonic oscillator that is in contact with a thermal bath

at inverse temperature βb such that n = (eβbω − 1)−1 evolves
according to the master equation

∂tρ =
γ

2
[(n+1)(2âρ â†−{â†â,ρ})+n(2â†

ρ â−{ââ†,ρ})]
(2)

with ρ the density matrix of the oscillator and γ the oscilla-
tor energy damping rate. This equation, which is valid in the
limit of weak-coupling between the oscillator and its environ-
ment, can be solved using phase-space methods leading to the
following time evolved covariance matrix [2]

σth(t) = (2n+1)(1− e−γt)114 +σthe−γt

=

(
e−2r−tγ(2m+1)+(1− e−tγ)(2n+1) 0

0 e2r−tγ(2m+1)+(1− e−tγ)(2n+1)

)
.

(3)

Our goal here is to estimate the time t needed by the oscil-
lator to relax towards a thermal state with a mean phonon
number n. Our figure of merit in this respect is embodied by
the fidelity between the state characterised by the covariance
matrix Eq. (3) and the thermal state with covariance matrix
σb = (2n+1)114. As we are dealing with Gaussian states and
processes, we can write such fidelity in terms of the respective
covariance matrices only as [3]

F(σth(t),σb) =
2

√
∆+Λ−

√
Λ

(4)

with

∆ = det[σth(t)+σb],

Λ = (det[σb]−1)(detσth(t)−1).
(5)

The analytic expression for the fidelity enables the calcu-
lation of a lower bound to the irreversible entropy ∆Sth

irr pro-
duced during the thermalisation process, which is evaluated
by following the formal apparatus presented in Ref. [4] ac-
cording to which ∆Sth

irr ≥ B(t) = s[2L (σth(t),σb)/π] with

s[x] = 2x2 +4x4/9+32x6/135+O(x8) (6)
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FIG. 1: Fidelity Fσth(t),σb) [panel (a)] and bound to the irreversible entropy B(t) [panel (b)] plotted against the dimensionless system-bath
interaction time γt and the initial phonon occupation number m of the working medium for n = 10 and r = 1. Panel (c) shows a comparison
between these two functions (the fidelity [irreversible entropy] being represented by the solid black line [dashed red line]) for m = 5. These
behaviours should be taken as typical.

and L (σth(t),σb) = arccos
√

F(σth(t),σb) the Bures angle
between the states defined by their respective covariance ma-
trix. Both the fidelity and the bound to the irreversible en-
tropy are shown in Fig. 1 (a) and (b) for a choice of the initial
degree of squeezing of the oscillator and temperature of the
bath. As we are interested in the time taken by the oscilla-
tor to thermalise to the bath it is in contact with, we study
such functions against the dimensionless oscillator-bath in-
teraction time γt and the initial value of m. The behaviors
shown in Fig. 1 should be taken as typical, as verified by ex-
ploring these function within a wide range of values of the
involved parameters. Clearly, a working point exists such that
the system equilibrates within a time γt∗ ' 1 [such time is
determined by considering the threshold value of γt at which
F(σth(t∗),σb) & 0.9]. Although B(t) embodies only a lower
bound, we have checked that within the range of parameters
used in Figs. 1 (a)-(c), it is faithful to the explicit evalua-
tion of the entropy produced in the process according to the
general (and much more involved) approach put forward in
Ref. [5], and involving the quantum Gaussian relative entropy
between the initial squeezed thermal state and the final equi-
librium one at the temperature of the bath. As such, in what
follows we stick to the use of B(t) as providing a reliable and
easily grasped estimate of the irreversible entropy produced
in the system, which is kept at quite low levels. A compari-
son between F(σth(t),σb) and the bound, here labelled B(t)
(we omit its explicit form for simplicity), is given in Fig. 1 (c)
for m = n/2 = 5. Needless to say, as this analysis is valid for
γ � ω(0),ω(τ) (for the validity of weak-coupling assump-
tions), these results should be kept in consideration when eval-
uating the power of the engine at hand.

This analysis shows that the running times τ2,4 of the iso-
chores needed for the Otto cycle can be kept at finite values,
still achieving effective low-entropy thermalisation processes
that would leave Eqs. (1) and (2) of the main paper valid.

II. NONEQUILIBRIUM WORK FLUCTUATIONS

We next present the derivation of Eq. (7) in the main paper.
Consider as reference states the fictitious equilibrium state ρ

eq
t

and the adiabatic one ρad
t . Then, in the adiabatic limit the

average work can be rewritten as

〈Wad(t)〉 = Tr[ρ0(Ĥ (t)−Ĥ (0)] = ∑
n

p0
n[εn(t)− εn(0)]

= −1
β

∑
n

p0
nlnpt

n+
1
β

∑
n

p0
nlnp0

n−
1
β

ln(Zt/Z0)

=
1
β

S(ρad
t ||ρ

eq
t )+∆F (7)

with Zt = Tr[e−βĤ (t)] the instantaneous partition function.
For a general nonequilibrium process, the average work reads
instead

〈W 〉 = −1
β

∑
nk

p0
n pt

nklnpt
k+

1
β

∑
n

p0
nlnp0

n−
1
β

ln(Zt/Z0)

=
1
β

S(ρt ||ρeq
t )+∆F. (8)

As a result, nonequilibrium deviations from the mean adia-
batic work take the form

δW =
1
β
[S(ρt ||ρeq

t )−S(ρad
t ||ρ

eq
t )]. (9)

It is worth considering an an alternative approach, where ρad
t

is used as a reference state and the dynamics is restricted to the
class of self-similar processes [6–8], for which conservation
of the population in the mode |n(t)〉 as a function of time t is
satisfied provided that

βt = βεn(0)/εn(t), (10)

as it is the case for the adiabatic dynamics associated to the
shortcuts discussed here. Under such condition the partition
of the instantaneous equilibrium state remains constant Zt =
Z0 = Z. Using ρad

t , the average work in the adiabatic limit
reads

〈Wad(t)〉 =
1
β

∑
n

p0
nlnp0

n−
1
βt

∑
n

p0
nlnpt

n−(
1
βt
− 1

β
)lnZ

=
1
βt

S(ρt)−
1
β

S(ρ0)+∆F, (11)
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where we have introduced the von Neuman entropy S(ρ) =
−Tr[ρlnρ] of an arbitrary state ρ . More generally,

〈W 〉 =
1
β

∑
n

p0
nlnp0

n−
1
βt

∑
k,n

pt
nk p0

nlnp0
k−(

1
βt
− 1

β
)lnZ

=
1
βt

S(ρt)−
1
β

S(ρ0)+
1
βt

S(ρt ||ρad
t )+∆F. (12)

This leads to the following compact expression for nonequi-
librium work deviations form the adiabatic path,

δW =
1
βt

S(ρt ||ρad
t ). (13)

The two expressions for δW , Eqs. (9) and (13), agree for self-
similar processes and vanish at the end of the stroke (either 1
or 3 in Fig. 1 of the main paper) both for a shortcut and in the
adiabatic limit.

III. UPPER BOUND TO POWER THROUGH THE
QUANTUM SPEED LIMIT

The quantum speed limit for a driven quantum system [9]
allows us to derive an upper bound for the power of the engine.

For simplicity, we can consider a equal-time shortcuts along
the two super-adiabats so that τ = τ1 = τ3. Then, it follows
that

P≤−
〈Wad,1(τ)〉+ 〈Wad,3(τ)〉

h̄L
(
ρ

eq
τ ,ρ0

) max
{

Eτ ,∆Eτ

}
. (14)

where Eτ = τ−1 ∫ τ

0 dtTr[ρtĤ (t)] with respect to the
ground state energy, ∆Eτ = τ−1 ∫ τ

0 dt {Tr[ρtĤ 2(t)] −
Tr[ρtĤ (t)]2}1/2, and the angle in Hilbert space between
initial and target states is

L
(
ρ0,ρ

eq
τ

)
= arccos

(√
F
(
ρ0,ρ

eq
τ

))
(15)

in terms of the fidelity F
(
ρ0,ρ

eq
τ

)
=
[
Tr
√√

ρ0 ρ
eq
τ

√
ρ0

]2
. In

a super-adiabatic engine, 〈W 〉ad,1 + 〈W 〉ad,3 equals

∑
j=1,3
〈Wad,j(τ)〉=

h̄
2
(ω0−ωτ)

[
coth

βch̄ω(τ)

2
− coth

β h̄ω0

2
]

(16)
where βc is the inverse temperature of the cold bath during
stage 2.
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