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ABSTRACT
Cell proliferation and differentiation show a remarkable inverse relationship. Precursor cells continue
division before acquiring a fully differentiated state, while terminal differentiation usually coincides with
proliferation arrest and permanent exit from the division cycle. Mechanistic insight in the temporal
coordination between cell cycle exit and differentiation has come from studies of cells in culture and
genetic animal models. As initially described for skeletal muscle differentiation, temporal coordination
involves mutual antagonism between cyclin-dependent kinases that promote cell cycle entry and
transcription factors that induce tissue-specific gene expression. Recent insights highlight the contribution
of chromatin-regulating complexes that act in conjunction with the transcription factors and determine
their activity. In particular SWI/SNF chromatin remodelers contribute to dual regulation of cell cycle and
tissue-specific gene expression during terminal differentiation. We review the concerted regulation of the
cell cycle and cell type-specific transcription, and discuss common mutations in human cancer that
emphasize the clinical importance of proliferation versus differentiation control.
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Introduction

The formation of a complete organism from a single fertilized
egg is an intriguing and highly complex process. It requires the
generation of large numbers of cells, which at the appropriate
times acquire specialized functions and morphologies, while
assembling into well-defined structures, tissues, and organs.
Most cells follow a gradual process of specialization with a final
step, terminal differentiation, characterized by acquisition of a
fully differentiated post-mitotic state. Examples include neu-
rons, muscles, and bone cells formed from proliferating precur-
sor cells that shut down the cell cycle machinery while
activating cell type-specific transcriptional programs. The tem-
poral coupling between cell cycle withdrawal and differentia-
tion is crucial for normal growth and development, and
continues to be critical for tissue homeostasis and cell replace-
ment throughout life. In contrast, a failure to arrest prolifera-
tion or loss of differentiation can lead to a variety of diseases
and are hallmarks of cancer cells. Deregulation of proliferation
has been long known to contribute to carcinogenesis. Recent
insights in the frequency of genetic alterations in human cancer
also highlight a widespread disruption of differentiation-related
chromatin regulators and cell type-specific transcription factors
in human cancer.1 Here, we examine the molecular mecha-
nisms that connect cell cycle exit to cell differentiation, and
consider the potential implications for human cancer.

Cell cycle entry and exit

Cyclin Dependent Kinases (CDKs) in association with cyclin
regulatory subunits are the master regulators of the cell division
cycle. Dependent on the activity of CDK-cyclin complexes in
the G1 phase, cells may arrest cell division or commit to go
through a division cycle (Figure 1).2 This decision depends on
extracellular signals and cell-intrinsic information, which deter-
mine CDK reactivation after the previous cell cycle.3 Stimula-
tion of quiescent cells with mitogens and growth factors
induces expression of D-type cyclins (D1, D2, D3 in mammals)
and activation of CDK4 or CDK6 (together: CDK4/6)
(Figure 1).4 CDK4/6-cyclin D is responsible for limited phos-
phorylation of the retinoblastoma tumor suppressor (Rb) pro-
tein. This phosphorylation is thought to weaken the interaction
between pRb and the heterodimeric transcription factor E2F/
DP (together referred to as E2F). As a consequence, the repres-
sion of activating E2Fs by pRb is reduced, which allows initial
transcription of E2F-dependent genes that include cyclin E and
other cell cycle genes. Subsequent activation of CDK2-cyclin E
leads to further phosphorylation and inactivation of pRb, release
of E2F, and full commitment to S-phase entry (Figure 1).5

In addition to pRb-mediated transcriptional repression,
several other levels of control counteract progression from G1
into S-phase. This includes members of 2 different families of
CDK inhibitory proteins (CKIs) that associate with CDKs
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(Figure 1).6 CKIs of the INK4 protein family, such as p16INK4A,
bind specifically to CDK4/6 kinases and prevent their interaction
with D-type cyclins. In contrast, CKIs of the CIP/KIP family
associate with CDK-cyclin complexes and block their activity.
The CIP/KIP family consists of p21Cip1, p27Kip1, and p57Kip2 and
is particularly important for temporal control of CDK2-cyclin E.
Proteins of both CKI families contribute to cell cycle exit and
show increased expression in differentiating cells. The impor-
tance of CKIs is further underscored by the functional inactiva-
tion of p16INK4A in a wide variety of human cancers.1,6

Entry into the cell cycle is also controlled by ubiquitin-
dependent protein degradation. This is primarily regulated at
the level of substrate recognition by E3 ubiquitin ligases. E3
ligases with important functions in G1/S inhibition are the
Anaphase Promoting Complex/Cyclosome (APC/C) in associa-
tion with the FZR1/Cdh1 coactivator, and Skp1, Cullin, F-box
factor (SCF) complexes. SCF in complex with the Fbw7 sub-
strate-recognition factor targets cyclin E for degradation and
inhibits cell cycle progression. In contrast, SCF in association
with Skp2 directs the destruction of p21Cip1 and p27Kip1 and
promotes cell cycle entry (Figure 1).7

Quiescence or permanent arrest

Induction of negative cell cycle regulators and inhibition of
positive regulators can cause temporary or permanent cell cycle
arrest. A major question is how the reversible non-dividing
state, known as quiescence, differs from permanent cell cycle
arrest. Interestingly, quiescent cells may retain the ability to
resume proliferation by actively preventing differentiation.8,9 It
has been proposed that increased expression of the transcrip-
tional repressor Hairy and Enhancer of Split1 (HES1) antago-
nizes senescence and terminal differentiation of quiescent
cells.9 HES1 is a target of Notch signaling and has also been
implicated in p57Kip2 repression and maintenance of the prolif-
erating state of muscle precursor cells.9,10 While expression of
cell cycle inhibitors contributes to both temporal and

permanent cell cycle arrest, stable transcriptional repression of
cell cycle-promoting genes may be specific for the irreversible
cell cycle arrest that coincides with terminal differentiation.11

Proliferation-differentiation decisions in G1

As cells respond to external signals during the G1 phase, devel-
opmental variations in the cell division cycle may influence
proliferation vs. differentiation decisions. Early studies of
embryonal carcinoma cells indicated that differentiation can be
rapidly induced in G1, but not in S phase.12 Since, developmen-
tal control over the length of G1 phase has been proposed as a
differentiation-regulating mechanism. Undifferentiated cells in
the early embryo of many animal systems, including flies, frogs,
and zebrafish, undergo rapid cell divisions that entirely lack G1
and G2 phases. During mammalian embryogenesis, cell divi-
sion cycles become very short after preimplantation embryos
reach the blastocyst stage, with a subset of cells completing the
division cycle in only 3 hours.13,14 Similarly, embryonic stem
cells established from the inner cell mass of preimplantation
embryos have unusual cell cycles with a short G1 phase of
approximately 2 hours.

Various studies have addressed whether the short G1 phase
is relevant for maintenance of the undifferentiated state. The
short embryonic cycles are characterized by the absence of
active CDK inhibitors and constitutively high levels of CDKs
and cyclins, especially CDK2-cyclin E.15-17 These cell cycle pro-
files start to change during the induction of differentiation or
developmental transitions such as the specification of the 3
germ layers in mice. During these processes, the CDK-cyclin
associated kinase activity drops and becomes more cell cycle
dependent. This coincides with establishment of a functional
CDK4/6-cyclin D–pRb pathway and increased expression of
cell cycle inhibitors.14 As a consequence, cell cycles become lon-
ger and include an extended G1 phase. Experimentally increas-
ing the levels of CDK2-cyclin E activity in mouse or human
embryonic stem cells reduced the cell cycle length and

Figure 1. Regulation of the G1/S transition. Phosphorylation by CDK-cyclin complexes counteracts the binding between retinoblastoma tumor suppressor (Rb) family pro-
teins and E2F transcription factors, thereby allowing transcriptional activation of S-phase genes. E2F refers to heterodimeric transcription factors that contain an E2F and
DP family protein. Some E2F subunits are primarily transcriptional activators (E2F1, E2F2, E2F3a), and are blocked by pRb binding. Other E2Fs are transcriptional repressors
and act in conjunction with pRb (E2F4, E2F5), or independent of the pRb protein family (E2F6–8). The pRb protein family consists of pRb, p107, and p130. Inhibition of
APC/C-FZR1 may involve association with the Emi1 inhibitor (not shown) or phosphorylation by CDKs.145 See text for further information and references.
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obstructed differentiation. Decreasing CDK2-cyclin E levels
had the opposite effect.15,16 Studies with sorted populations of
human and murine embryonic stem cells established that cells
with the shortest G1 phase are in the na€ıve pluripotent state,
and that G1 corresponds to a higher susceptibility to differenti-
ate, compared to S and G2.18-20

Thus, high G1 CDK-cyclin activity, a short G1 phase, or the
combination of both promotes the undifferentiated state of
embryonic stem cells. The converse is seen during later stages
of development, in particular in the nervous system. As neural
stem cell-like progenitors switch from proliferative divisions to
neurogenic divisions in the developing mouse brain, the time
in G1 phase increases from approximately 3 to 12 hours.16

Cyclin E inhibition in the progenitors resulted in a longer G1
phase and a premature switch from proliferative to neurogenic
divisions. Comparable effects were obtained after interfering
with CDK4-cyclin D activity. Moreover, cyclin D1 knockout in
the retina caused increased neurogenesis at the expense of pro-
genitor expansion, whereas overexpression of cyclin D1 and
CDK4 led to shortening of G1 phase and a delay in neurogene-
sis.21,22 The increased length of G1 may allow time to respond
to external signals and to accumulate differentiation-inducing
transcription factors.16

Probably contributing to differentiation susceptibility in G1,
cyclin-dependent kinases cannot oppose differentiation-induc-
ing mechanisms during part of G1 phase. As such, signals
received in early versus late G1 can have different outcomes.23

In response to TGFb-related signaling, pluripotent human
embryonic stem cells in early G1 were observed to form endo-
derm, while late G1 cells showed neurectodermal specification.
The difference was traced to activation of CDK4/6-cyclin D,
which phosphorylated and blocked nuclear import of Smad2/3,

thereby preventing endoderm and allowing neurectodermal
differentiation.23 These data emphasize the intimate connection
between G1 length, G1 CDK-cyclin activation and the response
to developmental signals.

CDK inhibition of differentiation-inducing
transcription factors

Muscle differentiation

A direct antagonism between cell cycle-promoting CDKs and
differentiation-inducing transcription factors has been long
proposed. Insight has come from studies of skeletal muscle for-
mation from differentiating C2C12 mouse myoblast cells in
culture, and from primary myoblasts or progenitors such as sat-
ellite cells in model systems.24-26 Skeletal muscle differentiation
starts with a determination step, formation of proliferative
myoblasts, which is followed by induction of muscle-specific
gene expression, exit from the cell cycle, and fusion to form
multinucleated myotubes (Figure 2). A network of helix-loop-
helix (bHLH) myogenic regulatory factors (MRFs) controls the
determination and differentiation steps. The myoblast determi-
nation protein (MyoD) and myogenic factor 5 (Myf5) serve as
the main myogenic determination factors, while myogenin,
Mrf4 and MyoD promote the induction of terminal differentia-
tion (Figure 2). These MRFs act in concert with general tran-
scription factors, including their E protein heterodimeric
binding partners, and the myocyte enhancer factor MEF2.

Ectopic expression of MyoD has long been known to trigger
muscle-specific gene expression in many cell types.27 Neverthe-
less, MyoD is present in proliferating myoblasts and associated
with regulatory regions of a substantial number of target genes

Figure 2. Model systems to study the coordination of cell cycle exit and differentiation. Both muscle and neuronal development has served as powerful model systems to
study the temporal coupling between cell cycle exit and differentiation. Differentiated muscle cells and neurons are formed from precursor cells that first become lineage
restricted, then committed precursors that continue proliferative divisions, and finally terminally differentiated post-mitotic cells. This requires the activation of myogenic
and pro-neuronal transcription factors and is often accompanied by the upregulation of negative cell cycle regulators.
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that remain silent until differentiation is induced and cell pro-
liferation seizes. Thus, additional regulators control MyoD-
dependent transcriptional activation and execution of a muscle
differentiation program. Overexpression of the cell cycle regu-
lator Cyclin D1 was found to inhibit MyoD-induced myogene-
sis and transcriptional activation.28-30 This effect appeared
CDK4-cyclin D kinase-activity dependent and partly Rb-inde-
pendent. As an attractive hypothesis, CDK4-cyclin D might
phosphorylate and inhibit MyoD, but evidence for such phos-
phorylation was not found. Instead, mutual inhibition of CDK4
and MyoD through direct protein association has been pro-
posed.31 It remains unclear, however, if this interaction is phys-
iologically relevant.

Some evidence indicates that CDK4-cyclin D phosphory-
lates the transcription factor MEF2, which acts together
with MyoD in muscle differentiation.32,33 This could explain
the observed pRb-independent CDK4-cyclin D effect, while
the pRb-dependent contribution is likely to result from
E2F-dependent transcriptional activation of cyclin E. Several
groups reported direct phosphorylation of MyoD by
CDK2-cyclin E at serine 200, one of multiple in vivo phos-
phorylated residues of MyoD.34-36 In support of in vivo
phosphorylation, roscovitin, a chemical CDK2 and CDK1
inhibitor, and overexpression of p57Kip2 each prevented
MyoD-Ser200 phosphorylation. MyoD-Ser200 phosphoryla-
tion was found to correspond to increased turnover of
MyoD at the end of G1 phase.34,36,37 By preventing MyoD
accumulation and concomitant muscle differentiation, this
mechanism may contribute to continued myoblast prolifera-
tion. Nevertheless, the exact contributions of CDK-depen-
dent phosphorylation remain incompletely understood, and
the switch from transcriptional repression to activation of
muscle specific genes by MyoD, MEF2 and associated tran-
scriptional regulators clearly includes many additional levels
of control (see below).38

Neuronal differentiation

Like muscle formation, neuronal differentiation has been
studied in a variety of systems, ranging from embryonic car-
cinoma, neuroblastoma and pluripotent stem cells induced
to differentiate in culture, to sophisticated animal systems.
Neuronal development usually starts from a neuroepithelial
progenitor or stem cell, which gives rise to neuronal-
restricted and glia-restricted progenitors (Figure 2). Glia-
restricted precursors can generate oligodendrocytes and
astrocytes, while neuronal progenitors contribute to the for-
mation of the various neurons of the central and peripheral
nervous system.40 The pro-neuronal bHLH transcription fac-
tors of the Neurogenin (Neurog), NeuroD, and Achaete
scute-like 1 (Ascl1) families are critical for neurogenesis.
Interfering with these transcription factors influences the
coordination between proliferation and differentiation and
thereby the final number of differentiated neurons in the
brain.41,42

Examination of the proneuronal differentiation factor neu-
rogenin 2 (Ngn2) in Xenopus and mouse neuronal precursors
revealed extensive phosphorylation in vivo.43,44 Both mouse
and Xenopus Ngn2 contain 9 potential CDK-phosphorylated

residues, all serines followed by proline, and cyclin A and cyclin
B kinases efficiently phosphorylated Ngn2 in vitro. Mutating
these residues to non-phosphorylatable alanine increased the
activity of Ngn2 as an inducer of neurogenesis. Moreover, pro-
gressive phosphorylation in mitotic extracts correlated with
reduced DNA binding of Ngn2 in mobility shift assays.43,44

Similar results were obtained for the bHLH neurogenic tran-
scription factor Ascl1/Mash1.43 As an interesting hypothesis,
progressive multisite phosphorylation could affect the affinity
of these transcription factors in a cell cycle-dependent fashion,
allowing binding of only highly accessible sites in proliferating
precursor cells, while association with more closed regulatory
regions of differentiation promoting genes would be postponed
until CDK levels drop.45

Other examples from genetic model systems

Inhibition of differentiation inducing factors by CDK2-cyclin E
phosphorylation may be used broadly, as indicated by examples
in highly diverse systems. One of these systems is the Drosoph-
ila neuroblast.46-47 Drosophila neuroblasts typically divide
asymmetrically, combining self-renewal with the generation of
a ganglion mother cell, which divides again to form 2 differenti-
ated neurons. The transcription factor Prospero is deposited
exclusively to the ganglion mother cell during the asymmetric
neuroblast division. Prospero enters the nucleus of this cell and
induces a transcriptional program required for neuronal differ-
entiation. In the absence of cyclin E, nuclear localization of
Prospero is observed in both neuroblast daughter cells, leading
to premature neuronal differentiation.47,48 In contrast, ectopic
cyclin E expression induces asymmetric Prospero distribution
in a precursor that normally divides symmetrically. Thus,
cyclin E controls Prospero localization and antagonizes differ-
entiation, though it remains to be established if this involves
direct phosphorylation.

CDK2-cyclin E has also been implicated in antagonizing cell
differentiation in C. elegans.49,50 One example is reminiscent of
Drosophila Prospero and involves an asymmetric cell division
in the somatic gonad.49 Upon loss of cyclin E, some of these
divisions become symmetric, with the daughter cell that nor-
mally remains temporally quiescent also becoming a differenti-
ated Distal Tip Cell, a fate normally acquired only by its sister
cell. A quite distinct example of CDK2-cyclin E regulated
differentiation relates to germ line stem cells that form differ-
entiated gametes.50 This transition involves a switch from
mitotic cell division to entry into meiotic prophase. Meiotic
entry and arrest of cell division are promoted by the GLD-1
(defective in Germ Line Development) protein, which associ-
ates with mRNA targets and inhibits their translation. Several
lines of evidence indicate that GLD-1 is a direct substrate of
CDK2-cyclin E in vivo and in vitro. As a consequence of
CDK2-cylin E dependent GLD-1 phosphorylation, GLD-1 lev-
els remain low in the stem cells of the germ line, and prema-
ture cell cycle exit and meiotic entry are prevented.50

Interestingly, GLD-1 also represses cyclin E mRNA translation,
allowing a double negative feedback loop and abrupt transition
from mitosis to meiosis.50-52 These examples illustrate how
CDKs, in particular CDK2-cyclin E, can directly counter the
activity of differentiation inducing factors.
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Negative regulators of the cell cycle
promote differentiation

While positive cell cycle regulators prevent differentiation,
negative cell cycle regulators promote differentiation. In
particular, members of the CIP/KIP family of CDK inhibi-
tors are important for connecting cell cycle exit and differ-
entiation. Obviously, these cell cycle inhibitors interfere
with the activity of CDKs, and thus may overcome the
CDK-mediated inhibition of differentiation-inducing tran-
scription factors described above. In addition, CKIs may
contribute functions independent from CDK regulation. For
example, direct binding of p57Kip2 to MyoD has been
reported to stabilize MyoD, thereby promoting differentia-
tion.35 In addition, p27Kip1 expression was shown to arrest
mouse oligodendrocyte precursors, but p21Cip1 was still
needed for full differentiation.53 Furthermore, the N-termi-
nal part of Xenopus p27 (Xic1) has been shown to contrib-
ute a cell-cycle independent function in the differentiation
of multiple cell types.45 These functions of CIP/KIP family
members are not well understood, but may relate to stabili-
zation of differentiation-inducing transcription factors.

In cooperation with CIP/KIP family members, transcrip-
tional co-repressors of the pRb protein family promote cell dif-
ferentiation. This role resides at least in part in the inhibition of
cell cycle entry by complexes of pRb and E2F family proteins.5

However, pRb complexes have been reported to also promote
transcription of cell type-specific genes.54 The best-described
example is the differentiation of liver macrophages, which are
critical for completion of erythropoiesis.55 In this process, pRb
can bind the ETS-domain transcription-activating factor PU.1
as well as its antagonist, the bHLH-domain transcriptional
repressor Id2. PU.1 is needed for myeloid gene expression,
which is repressed by pRb association. Nevertheless, homozy-
gous deletion of the Rb gene caused reduced expression of spe-
cific myeloid genes, indicating a positive role for pRb in
transcription. As a likely explanation, loss of Rb also disrupts
pRb-mediated sequestering of Id2, and Id2 antagonizes PU.1-
activated transcription in the absence of pRb.55 What mecha-
nisms control whether pRb associates with PU.1 or Id2 is cur-
rently not understood.

In addition to CKIs and pRb family members, targeted pro-
tein degradation plays an important role in coordinating cell
cycle progression with differentiation. The APC/CCdh1 E3 ligase
contributes to cell cycle arrest and muscle fiber formation of
C2C12 cells. APC/CCdh1 targets both the cell cycle regulator
Skp2 and the early myogenic differentiation factor Myf5 for
degradation.56 The degradation of Skp2 results in elevated lev-
els of the CDK inhibitors p21Cip1 and p27Kip1, while degrada-
tion of Myf5 is required for myogenic fusion. Thus, by
promoting cell cycle arrest and ensuring the presence of the
correct combination of transcription factors, the APC/CCdh1

can act as a dual function regulator that links cell cycle exit to
differentiation.56

The examples above illustrate direct regulation of differenti-
ation-related transcription factors by G1/S inhibitors. CIP/KIP
inhibitors, pRb and APC/CCdh1 are all well-established inhibi-
tors of G1 progression, which also promote differentiation
through inhibition of G1 CDK-cyclins and lengthening of G1.

Thus, regulators of the cell cycle contribute both directly and
indirectly to regulation of cell differentiation, thereby coordi-
nating cell cycle exit and terminal differentiation.

Differentiation-inducing transcription factors induce
cell cycle arrest

To coordinate differentiation with cell cycle exit, the induction
of cell type-specific genes needs to go along with altered expres-
sion of cell cycle regulators. Importantly, several transcription
factors that promote differentiation of muscle cells, neurons, or
blood cells also control expression of cell cycle genes. Such a
dual function in transcriptional regulation was first observed
for MyoD, which triggers expression of the cell cycle inhibitors
p21Cip1 and p57Kip2.57-59 Similar to muscle-specific genes,
MyoD associates with p21Cip1 and p57Kip2 promoter sequences
in committed precursor cells, but transcriptional activation
only occurs coincident with differentiation.60,10 Knockout of
p21Cip1 and p57Kip2 impairs skeletal muscle development in
vivo, with defective muscle fibers resembling those of myogenin
knockout mice.61 These data point to an essential role for
MyoD-induced expression of CIP/KIP inhibitors in cell cycle
arrest during muscle formation.

Similar mechanisms are likely used during differentiation of
other cell types. For instance, 2 key transcription factors
required for erythrocyte development and maturation, EKLF
and GATA-1, directly control the expression levels of
p21Cip1.62,63 In addition, many studies have observed a correla-
tion between cell type-specific transcription factors and cell
cycle gene expression without examining direct regulation. For
instance, the Drosophila neurogenic transcription factor Pros-
pero, described above, promotes induction of neuron-specific
genes together with inactivation of positive cell cycle genes.
Prospero mutant embryos show continued proliferation despite
initiation of early steps of neuronal differentiation. Loss of
Prospero was found to coincide with severe upregulation of
cyclin E, cyclin A, and String/Cdc25, while ectopic Prospero
expression reduced expression of these positive cell cycle regu-
lators.64 While Prospero promotes cell cycle exit, it remains to
be demonstrated whether it acts directly at the promoters of
cell cycle genes. In contrast, a study in chicken spinal cords
addressed whether Neurogenin 2 (Ngn2) directly regulates cell
cycle genes.65 Gene expression was characterized immediately
following ectopic Ngn2 expression in early embryos, at the
time of neuronal commitment and before full differentiation.
This revealed Ngn2-dependent inhibition of patterning genes,
induction of differentiation-related genes, and simultaneously
reduced expression of positive cell cycle regulators. Cyclin E2
was identified as the only candidate direct target of transcrip-
tional repression by Ngn2 at this early stage, while the strongly
reduced expression of cyclin D and A-type cyclins appeared
indirect.65

Although further studies are needed, it is clear that multiple
cell cycle regulators directly control differentiation, while sev-
eral cell type-specific transcription regulators directly control
cell cycle gene expression. By making the expression of differ-
entiation-specific genes dependent on cell cycle regulators, and
the activity of cell cycle regulators on differentiation factors,
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tight coordination between cell cycle exit and differentiation
can be established.

Chromatin regulators coordinate cell cycle exit
with differentiation

The transcriptional changes involved in differentiation are not
achieved by transcription factors alone, but rather in coordina-
tion with a large variety of chromatin regulating factors. Gene
transcription requires binding of transcription factors to regu-
latory DNA sequences in promoter and enhancer elements.
Whether these transcription factors can bind and activate tran-
scription depends on the chromatin structure. Open chromatin
allows transcription factor and RNA polymerase access,
whereas densely packed nucleosomes inhibit transcription. The
chromatin composition and packaging of DNA is regulated by
multiple mechanisms, such as DNA methylation, histone mod-
ification (including phosphorylation, methylation, acetylation
and ubiquitylation), incorporation of histone variants and
ATP-dependent chromatin remodeling.66 Multi-subunit chro-
matin modification complexes covalently attach methyl groups
and other modifications to DNA or histones, or remove such
modifications. This either directly affects chromatin compac-
tion or contributes to the binding of molecules that recognize
or respond to these modifications. ATP-dependent chromatin
remodelers, on the other hand, use the energy of ATP hydroly-
sis to exchange, move, or eject histones. Together, these regula-
tors determine the accessibility of the DNA to transcription
factors, co-regulators, and RNA polymerase complexes. Chro-
matin regulators that are particularly important in regulating
cell cycle control, lineage commitment, and terminal differenti-
ation include pRb-containing modification complexes and pro-
teins of the Polycomb group and Trithorax group. We discuss
these regulators below, with special attention for SWI/SNF
ATPase-dependent chromatin remodeling complexes because
of their central role in cell division and differentiation
decisions.

pRb-dependent chromatin remodeling

Proteins of the pRb family promote the transcriptional silenc-
ing of cell cycle genes during differentiation. This is accom-
plished at least in part through association with E2F family
proteins, thereby blocking activating E2Fs (E2F1, E2F2, E2F3a)
and acting in conjunction with repressive E2Fs (E2F4, E2F5).5

pRb has also been reported to associate with cell type-specific
transcription factors, including MyoD, Myogenin, C/EBP,
PU.1, NF-IL6, Pax-3, and AP-2.54,67 While poorly understood,
interactions of pRb family members with cell-type specific tran-
scription factors may prevent transcriptional activation of dif-
ferentiation-specific genes in proliferating cells, as described for
Rb-E2F related complexes.68 It is thought that pRb fulfills these
transcriptional repressor functions in part via the recruitment
of various chromatin regulators.

Chromatin regulatory proteins reported to associate with
pRb include histone deacetylases (HDACs), ATPases of the
SWI/SNF chromatin remodeling complex, histone methyl-
transferases (HMTs), the DNA methyltransferase DNMT1,
and histone binding proteins such as HP1.5,69-71 Whether these

interactions, often detected by co-immunoprecipitation, reflect
functional cooperation in vivo has beens difficult to proof. Per-
haps best documented is the contribution of pRb complexes in
histone deacetylation, which corresponds to pRb/E2F localiza-
tion at gene regulatory sequences and contributes to transcrip-
tional repression of cyclin E, cyclin A, and other E2F targets
during cell cycle exit.69,71 HDAC recruitment to pRb/E2F-asso-
ciated promoters has been reported to depend on SWI/SNF
function.72 Genetic interactions in flies and worms support
cooperation between the Rb pathway and SWI/SNF complex,
likely by acting in parallel in transcriptional repression.73–75

The histone methyltransferases (HMTs) found associated
with pRb contribute to the formation of general gene silencing
marks. This includes the HMT Suv39h1, which is responsible
for trimethylation of lysine 9 of histone H3 (H3K9me3), a
repressive histone methylation mark associated with hetero-
chromatin. H3K9 trimethylation allows binding of the hetero-
chromatin binding protein HP1, which is an important step in
transcriptional repression. Notably, deacetylation, trimethyla-
tion and HP1 binding of H3K9 are 3 sequential steps in gene
silencing, carried out by 3 different chromatin regulators found
in association with pRb.76 The HMTs Suv4–20 h1 and h2 also
associate with pRb and are responsible for bi- and tri-methyla-
tion of H4K20. These methylations create a binding site for the
lethal malignant brain tumor protein L(3)MBT.77 L(3)MBT has
been reported to form part of a silencing complex that contains
pRb as well as a HP1 family member. Thus, through enzymatic
activities and protein association, the chromatin regulators
associated with pRb have the potential to induce chromatin
compaction and repression of gene transcription. These com-
bined activities likely contribute to the stable silencing of cell
cycle genes during cell cycle exit.

DREAM/synMuvB

Genetic studies in C. elegans and biochemical experiments in
Drosophila have identified another Rb-related repressor com-
plex. C. elegans genes encoding components of this complex
are needed to silence transcription of an epidermal growth fac-
tor (EGF) related gene in the epidermis. Only simultaneous
mutation of genes of different classes (class A, B, or C genes)
causes de-repression of lin-3 EGF and abnormal expression of
EGF in the epidermis. This induces the formation of extra vul-
val tissue at abnormal positions. This multi-vulva phenotype is
“synthetic” (synMuv), because it arises when mutations that
individually do not cause a multivulva phenotype are com-
bined. C. elegans Rb-related (LIN-35), E2F-like (EFL-1), DP-
like (DPL-1) and some additional conserved transcriptional
regulatory proteins all belong to the same synMuv B class, indi-
cating that these proteins function within a complex or genetic
pathway. Biochemical purification of Rb/E2F complexes from
Drosophila embryos revealed a repressor complex containing
fly Rb (RBF), E2F2, MYB and in addition 4 conserved synMuv
B proteins.78 This DREAM (Drosophila RBF, E2F and Myb)
complex is not only similar to the C. elegans synMuv B com-
plex, but also closely related to a mammalian complex that con-
tains repressive E2F4 and E2F5 and the pRb-related protein
p130.79-81 Importantly, the components of these complexes
remained associated through multiple biochemical purification
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steps, and were genetically identified because of their overlap-
ping functions in C. elegans. Therefore, the DREAM and
synMuvB RB/E2F-related protein complexes are likely physio-
logically relevant in vivo.

Surprisingly, the Drosophila and human DREAM complex
did not appear to contain obvious histone modification activi-
ties. This could question whether chromatin regulators are
truly required for the Rb-related repressor functions in vivo.
An independently purified Myb-MuvB complex that largely
corresponds to DREAM was found to contain associated
Rpd3 HDAC and L(3)MBT proteins.82 These proteins were
not detected in Drosophila DREAM, human p130-E2F4/5, or
C. elegans synMuv B complexes.78-81 However, C. elegans hda-
1 HDAC1, hpl-1 HP1 and lin-61 L(3)MBT all showed sub-
stantial phenotypic overlap with synMuv B genes, suggesting
overlapping functions. Moreover, Drosophila DREAM bound
specifically to deacetylated histone H4 tails, and L(3)MBT
required Myb-MuvB/DREAM for its chromosomal recruit-
ment.78,83 The combined data support that DREAM/MuvB
and chromatin modifying complexes function together in
transcriptional repression and likely engage in low affinity
physical interactions.

Only a subset of the C. elegans synMuv B genes contributes
to cell cycle arrest.84 In contrast, all prevent inappropriate
lin-3 EGF expression and several synMuv B genes are needed
for the silencing of germline-specific genes in somatic
cells.5,80,85 De-repression of germline genes in synMuv B
mutants is most obvious in the intestine and skin, 2 tissues
with continued S-phases and thus without cell cycle arrest dur-
ing larval development. Similarly, Drosophila DREAM subunits
are required for the permanent repression of sex- and differen-
tiation-specific genes in proliferating S2 cells and embryos.
Importantly, the fly dE2F2/RBF complexes remained chroma-
tin bound in S phase when E2F1 is active and CDK activity
high.68,86 In contrast, mammalian p130-E2F4/5 DREAM medi-
ates gene silencing specifically in quiescent or G0 arrested
cells.81 In summary, some Rb/E2F-related complexes repress
cell cycle genes during cell cycle exit, while other Rb/E2F-
related complexes repress cell type-specific gene expression in
cycling cells.

Polycomb and trithorax group genes and
developmental control of differentiation

Chromatin regulators of the Polycomb group (PcG) and the
antagonistically acting Trithorax group (TrxG) have emerged
as key players in cell cycle control, stem cell maintenance, cell
fate determination and terminal differentiation.87-89 PcG and
TrxG genes were originally identified in Drosophila, through
their roles in the maintenance of Homeobox (HOX) transcrip-
tion factor expression. While established in the early embryo,
HOX gene expression needs to be maintained during later
developmental stages to determine the identity of body seg-
ments. Mutations in PcG genes result in expression of HOX
genes outside the normal domains, which causes body seg-
ments to adopt the wrong identity. TrxG genes were defined
through mutants that fail to maintain HOX gene expression, or
as antagonists of PcG. Since, homologues of Drosophila PcG
and TrxG genes have been found to be conserved in a wide

variety of multicellular organisms and are now known to
repress or activate, respectively, transcription of many genes.

PcG proteins form multi-subunit protein complexes that
include the well-characterized Polycomb Repressor Complex 1
and 2. Both of these complexes contain a subunit with catalytic
activity. The dRing protein of PRC1 catalyzes ubiquitylation of
H2A at lysine residue K119. EZH (Enhancer of Zeste), one of
the core subunits of the PRC2 complex, is an HMT responsible
for the methylation of lysine 27 of histone H3 (H3K27).90

Other PRC2 subunits are needed for this HMT activity, and
one of the PRC1 subunits recognizes H3K27me3. Thus, PRC1
recruitment is likely coupled to PRC2 function and binding of
H3K27me3 by PRC1 probably contributes to chromatin com-
paction.89 Nevertheless, the relation between PRC1 and PRC2
activities and mechanisms of PcG-mediated transcriptional
repression remain poorly understood.

Trithorax group proteins oppose PcG protein-mediated
transcriptional repression and generally contribute to mainte-
nance of an active chromatin state. TrxG proteins form a highly
diverse class, which includes proteins with histone modifying
activities, components of chromatin remodeling complexes and
DNA binding proteins.88 The best-known TrxG representative
is the histone methyltransferase MLL1. MLL1 catalyzes histone
H3K4 trimethylation (H3K4me3), which is associated with
active transcription. Several MLL complexes also contain his-
tone acetyltransferase (HAT) activity, while other TrxG pro-
teins form a variety of ATP-dependent chromatin remodeling
complexes, including SWI/SNF complexes (see below).

PcG and TrxG in differentiation

In light of proliferation versus differentiation control, PcG and
TrxG genes are of particular interest because of their important
contribution to lineage commitment. As embryonic stem cells
become committed progenitors, remarkable changes in their
chromatin structure occur that even can be observed by light
and electron microscopy.91 The chromatin structure of embry-
onic stem cells is generally open and allows transcriptional acti-
vation, while the chromatin of lineage-committed cells becomes
more compact and less accessible to transcriptional activators.
Nevertheless, maintenance of the pluripotent stem cell state
requires that developmental genes remain silenced. This dual
goal may be achieved by marking the regulatory regions of dif-
ferentiation-related genes with bivalent domains, which contain
both the activating H3K4me3 and inactivating H3K27me3 his-
tone modifications.92 While bivalent domains prevent gene
transcription, they also maintain the potential for later activa-
tion. During differentiation, most of the bivalent domains lose
one of the 2 modifications and become monovalent, leaving
either activating or inactivating marks.92,93

In addition to their role in lineage commitment, the antago-
nism between PcG and TrxG proteins is critical for terminal
differentiation and cell cycle exit. The ink4A tumor suppressor
locus provides the best-characterized example of direct cell
cycle regulation by PcG and TrxG proteins. As first observed
for the bmi1 PRC1 component, PcG protein overexpression
results in repression of this locus, while PcG gene knockout in
mice leads to increased expression of p16INK4A and p19ARF, and
interferes with cell proliferation.94-96 TrxG proteins counteract
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PcG repression of this ink4A locus, as is further described
below.

Genome-wide analysis of human embryonic fibroblasts
showed PcG protein binding and H3K27me3 modification of
many genes involved in neuronal, bone, muscle, hematopoietic
and epithelial differentiation.97 During retinoic acid induced
neuronal differentiation, PcG binding and the H3K27me3
marks of neuron-specific genes decreased progressively.97,98

These and other results support that PcG-mediated gene silenc-
ing prevents premature expression of cell type-specific genes.

PcG-mediated repression can be reinstalled to allow pro-
genitor cells to switch fate. This was demonstrated for the
sequential production of neurons and astrocytes from neu-
ral precursor cells in the mouse neocortex. Conditional
knockout of the mouse Ring1 PRC1 and EZH2 PRC2 genes
interfered with downregulation of neurogenin1, and delayed
the switch from divisions that produce neurons to those
producing astrocytes.99 Thus PcG-mediated gene repression
is an important mechanism in the timing of developmental
decisions. In contrast to PcG, the TrxG gene Mll1 promotes
neurogenesis in the mouse post-natal brain.100 Conditional
knockout of Mll1 in neural precursor cells in the subven-
tricular zone prevented their neuronal differentiation. The
transcription factor Dlx2 was identified as the critical target
of MLL1 in this process. The Dlx2 gene contains a biva-
lently marked promoter, which depends on MLL1 binding
for activation.100 This example illustrates how the combined
activity of PcG and TrxG proteins determines the expres-
sion of genes that control important developmental transi-
tions, including neuronal differentiation.

As shown for neurons, muscle differentiation also involves
PcG protein-mediated chromatin remodeling. In proliferating
mouse C2C12 myoblasts, H3K27me3 marks muscle-specific
genes, while this silencing mark is absent from the promoters
of cell cycle genes at this stage. This is in contrast to later stages
of muscle differentiation, when differentiation genes become
expressed and cell cycle genes acquire the H3K27me3 repres-
sive mark.101,102 Interestingly, Rb knockdown by RNAi caused
loss of H3K27 trimethylation, re-expression of cell cycle genes,
and cell cycle re-entry of terminally differentiated muscle
cells.102 Additional experimental evidence supports that silenc-
ing of cell cycle genes coincides with trimethylation of H3K27,
and not H3K9 trimethylation, in this system.102,103

PcG proteins may be recruited to MyoD-bound pro-
moters in proliferating myoblasts to prevent premature dif-
ferentiation. In agreement with this idea, ectopic expression
of MyoD induced muscle differentiation of C. elegans pre-
cursor germ cells, but only when combined with knockdown
of PcG-gene function.104 ln mouse muscle formation, PcG
gene expression is downregulated during terminal differenti-
ation, while overexpression of the PcG protein EZH inhibits
muscle differentiation.101 Chromatin immunoprecipitation-
sequencing (ChIP-seq) analysis of differentiating C2C12 cells
revealed MyoD binding at the promoters of thousands of
genes, of which only a subset showed altered expression dur-
ing muscle differentiation.60 Focusing on repressive chroma-
tin marks in differentiating C2C12 cells, H3K27
trimethylation was strongly associated with gene silencing
but different gene classes could be distinguished.103 Genes

induced during muscle differentiation required continuous
PRC2 complex activity for transcriptional repression in
myoblasts, and appeared to lack PRC1 at their regulatory
sequences. In contrast, loci that remained continuously
silenced during differentiation were associated with PRC1
and retained H3K27me3 even after PRC2 knockdown.103

These and other findings indicate that PcG proteins act
broadly as global transcriptional repressors, maintaining cel-
lular homeostasis, suppressing cell type-specific gene expres-
sion, antagonizing cell cycle arrest and sustaining the
undifferentiated state.

SWI/SNF dependent chromatin remodeling in
differentiation and cell Cycle Regulation

The switching/sucrose non-fermenting (SWI/SNF) subclass of
TrxG proteins currently receives much scientific attention. This
was triggered by the recent discovery of an unexpectedly high
frequency of mutations in SWI/SNF subunit genes in human
cancer.1,105,106 It has become clear that SWI/SNF complexes
play critical roles in lineage commitment and terminal differen-
tiation in a wide variety of tissues and cell-types.107 SWI/SNF-
complexes are found in all eukaryotes, predominantly promote
transcriptional activation, and are needed for proper expression
of approximately 6% of all genes in yeast.108 They act as chro-
matin remodelers that use the energy of ATP hydrolysis to
mobilize nucleosomes, thereby altering DNA accessibility and
regulating transcription (Figure 3). The complex consists of
several core subunits, including the ATPase subunit Brahma
(BRM) in Drosophila, and either BRM or BRM-related Gene 1
(BRG1) in mammals (Figure 3). The other core components
are the BRM/BRG1-associated factors (BAFs) BAF155,
BAF170 and SNF5 (BAF47, INI1). These subunits appear pres-
ent in all SWI/SNF complexes, and when combined as purified
proteins reconstitute remodeling activity to the same level as
the entire SWI/SNF complex.109 In addition to this catalytically
active core, SWI/SNF complexes contain a large number of
associated subunits. Based on the associated subunits, 2 sub-
classes of SWI/SNF complexes have been distinguished, BAF
and PBAF, which contain the BAF250/ARID1/Osa and
BAF180/PBRM signature subunits, respectively (Figure 3).

Importantly, several of the associated SWI/SNF subunits
are encoded by multiple genes (Figure 3). At least some of
these variants show lineage-specific and differentiation-stage
specific expression and complex association. For example,
BAF45a and BAF53a need to be associated with the SWI/
SNF complex in proliferating neuronal progenitors, but are
exchanged for BAF45b/c and BAF53b when these cells exit
the cell cycle and differentiate.110 Moreover, 3 different genes
encode BAF60 variants (Figure 3), but BAF60c is the only
subunit expressed in the mesodermal precursors of cardio-
myocytes and myoblasts.111 BAF60c interacts with the
GATA4 cardiac transcription factor and with MyoD, and is
required for the formation of differentiated heart and skeletal
muscle. As such, BAF60c is currently the best-described
example of a variant subunit that bridges the SWI/SNF com-
plex to differentiation-inducing transcription factors.24,111

The SWI/SNF complex might fulfill its role in differenti-
ation by increasing DNA accessibility for transcription

CELL CYCLE 203



factor binding, or by binding transcription factors in order
to locally change the chromatin to provide access for addi-
tional factors, co-activators and the RNA polymerase com-
plex. Both mechanisms have been proposed for muscle
differentiation. On the one hand, association of the SWI/
SNF BRG1 subunit was reported to precede association of
MyoD with the myogenin promoter.112 In contrast, a more
recent study found BRG1-SWI/SNF complex recruitment to
follow induction of differentiation, after DNA binding of a
preassembled complex of MyoD with the muscle-specific
BAF60c subunit.113 While not fully resolved, recruitment of
SWI/SNF components may precede, coincide with or follow

promoter binding of cell type-specific transcription factors,
dependent on the target gene and cell-type.

SWI/SNF and cell-cycle arrest

SWI/SNF-mediated chromatin remodeling is critical not
only for cell differentiation but also for coordinating cell
cycle arrest with cell-type-specific gene expression. The
SWI/SNF complex has been implicated in the regulation of
cell cycle genes that include the INK4A-ARF locus, p21Cip1,
cMyc, cyclin D, and cyclin E. At least some of these genes
appear directly SWI/SNF regulated, as demonstrated in

Figure 3. Chromatin remodeling by the SWI/SNF complex. (A) The SWI/SNF chromatin-remodeling complex uses ATP hydrolysis to alter the chromatin state and DNA
accessibility. Binding of the SWI/SNF complex to chromatin reduces the interaction between DNA and histones, allowing either sliding or ejection of histones. This creates
a more open and accessible chromatin structure, or possibly the reverse. (B) Schematic overview of BAF and PBAF SWI/SNF complexes. SWI/SNF complexes consist of sev-
eral core subunits (yellow) in association with additional accessory subunits (gray) and signature subunits (red) which are mutually exclusive for either the BAF complex
(BAF250/ARID1) or the PBAF complex (BAF180/PBRM, BRD7 and BAF200/ARID2). All subunits are known by multiple names. While not used in the text, the systematic
SMARC (SWI/SNF-related, Matrix-associated, Actin-dependent Regulator of Chromatin) nomenclature is included. For simplicity, only the BAF names are used in (C).
(C) The core subunits (yellow) of the SWI/SNF complex assemble together with accessory subunits to ultimately form a functional complex. Dependent on the associated
subunits, the complex may interact with specific transcription factors and exert cell type or differentiation-specific functions. Here, some of the variants described to be
specifically incorporated during neuronal or muscle differentiation are shown in blue.
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malignant rhabdoid tumor cells that contain inactivating
mutations in the human SNF5/BAF47 gene. Reintroduction
of SNF5 into these tumor cells resulted in upregulation of
p16INK4a and p15INK4b expression and arrest of cell divi-
sion.114,115 SNF5 expression induced extensive chromatin
remodeling and removal of PRC1 and PRC2 PcG complexes
from the INK4a-INK4b locus. As described above, PcG-
complexes silence the INK4A-ARF locus, hence PcG gene
knockout and SNF5 activation both lead to increased
expression of p16INK4A. In contrast, loss of SWI/SNF activ-
ity was found to result in PcG-mediated silencing of the
INK4A locus, leading to continued proliferation and a stem
cell-like signature.114,115 These observations fit with the
identification of SWI/SNF genes as members of the Tri-
thorax group. Mechanistically, the SWI/SNF complex antag-
onizes PcG-mediated transcriptional repression by replacing
PcG proteins at the promoters of their joint target genes.115

Similar to the p16INK4A CDK4/6 inhibitor, expression of
p21Cip1 is also directly controlled by the SWI/SNF complex.
Down-regulation of several SWI/SNF components led to loss
of p21Cip1 expression, while re-expression of SNF5 in malignant
rhabdoid tumor cells induced p21Cip1 levels, independently of
p53.116,117 ChIP experiments showed strong p21Cip1 promoter
association of SNF5, in the proximity of the transcription start
site and together with RNA Polymerase II association. The
BAF-specific subunit BAF250b expressed in HeLa cells also
directly controlled p21Cip1 expression and induced cell cycle
arrest.118 These data support direct transcriptional activation of
p21Cip1 by the SWI/SNF BAF complex, and indicate that
p21Cip1 is an important mediator of SWI/SNF dependent cell
cycle arrest.

The SWI/SNF complex predominantly acts as a transcrip-
tional activator but has been reported to silence gene expression
also. This could indirectly result from induction of a silencing
factor, such as Hamlet in Drosophila neural stem cells.119 Sup-
port for direct SWI/SNF-mediated transcriptional repression of
cell cycle genes comes from studies in C. elegans. Chromatin
immunoprecipitation experiments revealed SWI/SNF associa-
tion with promoter regions of nearly all negative cell cycle regu-
lators in C. elegans, as well as a subset of positive

regulators.74,120 Moreover, detection of mRNA expression dur-
ing muscle differentiation demonstrated that induction of nega-
tive regulators and silencing of the positive regulators cyclin E
and Cdk4 both require SWI/SNF function.74 While the mecha-
nism of repression remained unclear, mammalian SWI/SNF
has been proposed to repress cyclin D and cyclin E through
recruitment of HDAC1 and concomitant inhibition of tran-
scription through histone deacetylation.121 Nucleosome remod-
eling and HDAC recruitment to SWI/SNF-bound promoters
may be used more broadly for SWI/SNF-mediated gene
repression.72,122

In summary, the chromatin-remodeling complexes
described above contribute directly to the regulation of cell
cycle genes and differentiation-associated genes. In particu-
lar the SWI/SNF complex acts as a dual regulator of general
cell cycle genes and cell type-specific genes. As global tran-
scriptional regulators of many cell cycle and differentiation
genes, chromatin-remodeling complexes fulfill a critical role
in coordinating cell cycle exit with terminal differentiation.

All-or-nothing transition from proliferating precursor
to differentiated cell

Robust control over the proliferation versus differentiation
decision likely results from redundant regulators and feedback
control mechanisms (Figure 4). For example, 3 Rb-related tran-
scriptional repressors and 3 CIP/KIP family CDK inhibitors
contribute to cell cycle exit in mammals. Redundancies are
observed between the 2 families, and between members of each
individual family of G1/S inhibitors. Notably, triple knockout
mice missing the entire Rb or CIP/KIP family are viable until
approximately day 10 or day 13 of gestation, respectively.123,124

As many differentiated cell types and tissues have been formed
at these stages, cell cycle exit and differentiation can occur in
the absence of an entire class of cell cycle inhibitors. Our results
in C. elegans emphasize this conclusion and showed that cell
cycle exit of muscle precursors involves cooperation between at
least 5 different levels of regulation, including Rb, SCFbTrCP,
APC/CFZR1, CKI, and SWI/SNF complexes (Figure 4).74 These
regulators display a high degree of redundancy, are individually

Figure 4. Robust control over the proliferation versus differentiation decision. A regulatory network of cell cycle regulators, transcription factors, lineage-specific SWI/SNF
complexes and chromatin modification complexes mediates the all-or-nothing transition from proliferating precursors to differentiated post-mitotic cells.
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not sufficient for reliable control, yet in combination create
highly robust “all-or-nothing” decisions in cell cycle exit.

An important double negative feedback appears to operate
in the proliferation-differentiation decision: G1 CDK-cyclins
antagonize differentiation-inducing transcription factors, while
these transcription factors in turn antagonize CDK-cyclin acti-
vation. The mutual antagonism between PcG and TrxG genes,
in particular the TrxG-SWI/SNF class, is an integral part of this
network. Several other levels of control likely help reinforce
the 2 mutually exclusive states, such as regulation of protein
degradation by E3 ubiquitin ligases, and regulation of mRNA
stability by miRNAs. The mutual antagonism is expected to
create bistability: cells either adopt a state of proliferation
without differentiation, or shut down the cell cycle and acquire
a differentiated state.

If this is true, how can cells make the transition from prolif-
erating precursor cells to post-mitotic differentiated cells?
Undergoing such a switch requires a substantial disruption of
the initial equilibrium. This can be accomplished by overex-
pression of a single critical regulator, for instance as discussed
for the ectopic expression of MyoD or CIP/KIP inhibitors. In
vivo, developmental transitions are likely accomplished through
coinciding alterations of multiple players. The trigger for these
alterations comes from external signals, cell intrinsic informa-
tion, or a combination of both. Many external factors can
induce transitions, such as cytokines, mitogens, growth factors,
Notch, Wnt/Wg, Hedgehog, and TGFb-BMP ligands. Cell
intrinsic information includes transcription regulators that
become unequally distributed during asymmetric cell division.
External or internal factors can disrupt an initially stable prolif-
erative state by inducing expression of CDK inhibitors, sup-
pression of cyclin transcription, activation of differentiation-
inducing transcription factors, recruitment of chromatin modi-
fication complexes, and displacement of PcG proteins from
promoters by SWI/SNF complexes, ultimately leading to cell
cycle arrest and induction of cell type-specific gene expression.

Substantial disruption of a differentiation transcriptional
program allows reversion to an undifferentiated proliferative
state, as best illustrated by induction of pluripotent stem cells
from post-mitotic neurons or mature lymphocytes.125 At the
same time, the mutual antagonism between cell cycle regulators
and cell-type specific transcription precludes that proliferation
and differentiation coincide. CDK2-cyclin E expression in dif-
ferentiated C. elegans muscle cells induced expression of a
defined set of genes with strongly enriched signatures of E2F
targets and cell cycle functions.11 CDK4-Cyclin D expression
altered a broader set of genes, but still could not overcome
silencing of critical cell cycle regulators. Thus, manipulation of
cell cycle regulators readily alters the proliferation-differentia-
tion decision in precursor cells, but controls that resist CDK-
cyclin regulation appear to promote maintenance of the
arrested state in terminally differentiated cells.

Nevertheless, some specific examples have been reported of coin-
cident occurrence of cell division and a highly differentiated state.
For instance, loss of Rb allowed proliferation of post-mitotic hair
cells in the mouse inner ear, and part of these hair cells remained
functional126 Similarly, conditional inactivation of multiple Rb-fam-
ily members in the mouse eye caused terminally differentiated neu-
rons to resume proliferation while maintaining a differentiated

state.127 InDrosophila, simultaneous activation of E2F andG1CDK-
cyclins caused overproliferation of terminally differentiated cells in
the eyes and wings128,129 In addition, cardiac muscle cells are notori-
ously post-mitotic, but mouse HL-1 cells derived from cardiac mus-
cle combine proliferation with maintenance of a differentiated
phenotype. Even normal cardiomyocytes can proliferate to promote
regeneration of the neonatal mouse heart, a capacity that is lost soon
after birth.130,131 Much insight may be gained from understanding
how the feedbackmechanisms that coordinate cell cycle exit and dif-
ferentiation are overcome in these specific situations.

Switching from proliferation to differentiation

While some mechanisms apply to differentiation in general,
much of the regulation is tissue specific, which greatly adds to
the complexity of the proliferation-differentiation decision.
Summarizing some of the insight in muscle fiber formation
from proliferating myoblasts illustrates this point (Figure 5).
Myogenic-regulatory factors act in a switch-like circuitry, with
external proliferation and differentiation-inducing factors
determining expression of MRFs as well as the switch from
transcriptional repression to activation. Growth factors and
mitogenic signals prevent MyoD-induced activation of muscle-
specific genes in proliferating myoblasts. As described above,
this involves phosphorylation of MyoD by CDK2-cyclin E, as
well as phosphorylation of the collaborating MEF2 transcrip-
tion factor by CDK4/6-cyclin D.32-37 Reduction of growth fac-
tors allows differentiation, in part through downregulation of
the inhibitory phosphorylations. Simultaneously, differentia-
tion signals induce p38 MAPK activation with critical regula-
tory functions in muscle formation (Figure 5). In proliferating
C2C12 myoblasts, MyoD and MEF2 are already present at the
promoters of many differentiation induced genes, and MyoD is
associated with the BAF60c SWI/SNF subunit.113 Activated
p38 MAPK phosphorylates BAF60c, which triggers the assem-
bly of a functional SWI/SNF complex onto the preassembled
MyoD/BAF60c pioneer complex.113 In addition, p38 MAPK
phosphorylates MEK2, which induces recruitment of an
MLL2-menin TrxG activation complex.132 An additional p38
MAPK pathway leads to phosphorylation of a scaffolding pro-
tein, KAP1, associated with MyoD-E12 and MEF2 transcrip-
tion factors, release of co-repressors and recruitment of co-
activators at target gene promoters.38 Thus, growth factor
reduction and differentiation-inducing signals both contribute
to differentiation by activating transcription from MyoD-
MEF2 occupied promoters.

In conclusion, a regulatory network of cell cycle regulators,
transcription factors, lineage-specific SWI/SNF complexes and
chromatin modification complexes induce the all-or-nothing
transition from proliferating precursors to differentiated post-
mitotic cells (Figure 4). While complex, a deeper understanding
of these regulatory networks and their cell type-specific varia-
tions has the potential to lead to improved possibilities for
regenerative medicine and cancer treatment.

Proliferation vs. differentiation in cancer

The mechanisms that maintain the balance between cell prolif-
eration and differentiation are often compromised in cancer
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cells, leading to unperturbed proliferation and a failure to dif-
ferentiate.133 Nevertheless, the link between proliferation and
differentiation still seems to exist, at least in some cancers.
Overexpression of cell cycle inhibitors can be sufficient for
differentiation induction. For instance, overexpression of the
CDK inhibitors p21Cip1, p27Kip1, p19ARF and p16INK4A inhibited
proliferation and simultaneously induced differentiation in a
variety of tumor cells.134-136 Similarly, modulating the
activity of transcription factors can promote both differentia-
tion and cell cycle arrest and has been used in the treatment of
leukemia.137 These examples demonstrate that the tight link
between proliferation and differentiation can still exist in
malignancies, with differentiation following from inhibition of
the cell cycle, and cell cycle arrest resulting from differentiation
induction.

While transcriptional regulators are becoming attractive tar-
gets in anti-cancer therapy, tissue- and cell type-specific differ-
ences complicate a general therapeutic strategy. The

contribution of the transcription factor PU.1 in acute myeloid
leukemia (AML) and mouse erythroleukemia (MEL) illustrates
this point. PU.1 is required for the generation of myeloid and
common lymphoid precursor cells.137 Early loss of PU.1 can
prevent myeloid differentiation, allowing continuous prolifera-
tion of precursor cells without differentiation and contributing
to cancer development. However, PU.1 has an opposite role
during erythroid differentiation, where it prevents differentia-
tion into mature erythrocytes by inhibiting the transcription
factor GATA-1. In agreement, loss of PU.1 stimulated MEL
cells to re-enter a differentiation program and to undergo ter-
minal growth arrest.

The contribution and composition of PcG complexes is also
cell type dependent. Deregulation of PcG genes is strongly asso-
ciated with cancer, in agreement with their roles in stem cell
maintenance, inhibition of differentiation, and transcriptional
repression of the INK4 locus. PcG genes act as oncogenes
and have been found upregulated in some cancers, while

Figure 5. Coordinating muscle-specific gene expression with cell cycle exit. (A) In proliferating cells, muscle-specific gene expression is prevented by phosphorylation of
MyoD by CDK2-cyclin E, as well as inhibition of the collaborating MEF2 transcription factor by CDK4/6-cyclin D. In addition the scaffolding protein KAP1 is bound to
MyoD-E12 and MEF2 transcription factors, which results in the recruitment of co-repressor complexes that also methylate and inhibit MyoD and MEF2. The presence of
PcG complexes further inhibits transcription of muscle specific genes. Reduction of growth factors allows differentiation, in part through downregulation of the inhibitory
phosphorylations. Simultaneously, differentiation signals induce p38 MAPK activation. Activation of p38 results in phosphorylation of BAF60c bound to MyoD, which trig-
gers the assembly of a functional SWI/SNF complex onto the preassembled MyoD/BAF60c pioneer complex. Recruitment of the SWI/SNF chromatin remodeler contributes
to the replacement of PcG complexes and results in the formation of an open and active chromatin state. In addition, p38 MAPK phosphorylates MEK2, which induces
recruitment of an MLL2-menin HMT transcriptional activator. As a third mechanism, activation of the p38 MAPK pathway leads to phosphorylation of KAP1, thereby
triggering release of co-repressors and recruitment of co-activators at target gene promoters. See text for further information and references.
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downregulated and showing tumor suppressor activity in
others.138 Context-dependent contributions of critical PcG tar-
get genes likely explain this discrepancy.

While various SWI/SNF subunits are established tumor sup-
pressors, the mutation frequency of individual subunits shows
remarkable variation dependent on the cancer type. Biallelic
inactivation of the SNF5/SMARCB1 core subunit is found
almost invariably in malignant rhabdoid tumors, and likely is
the single causative mutation in these aggressive pediatric
malignancies.106 However, mutation of SNF5 or of the
SMARCC1 (BAF155) and SMARCC2 (BAF170) core subunits
is not common in other cancer types.1,105,139 The BRG1
(SMARCA4) enzymatic subunit shows substantial mutation
frequencies, in particular in melanomas. Overall, ARID1A
(BAF250a) is the most commonly mutated SWI/SNF subunit
gene, with particularly high inactivation rates in a subset of
bladder and endometrial carcinomas, as well as ovarian and
renal clear cell carcinoma. While ARID1A is specifically associ-
ated with the BAF complex, genes encoding the PBAF-specific
subunits PBRM and ARID2 also show significant mutation fre-
quencies. Collectively, SWI/SNF subunit genes have been found
to be mutated in nearly 20% of all tumors reported in a large
number of studies, placing them among the most frequently
mutated genes in human cancer.1,105,106,139,140

The subunit specific mutation frequencies may reside in
selective pressure against cell type-specific functions in cell
cycle arrest and differentiation, while complete elimination of
SWI/SNF function may be detrimental or even cell lethal. Gene
alterations that are mutually exclusive with inactivation of
SWI/SNF subunits, affecting other chromatin remodeling com-
ponents, cell type-specific transcription factors or cell cycle reg-
ulators, could help identify critical tumor suppressor functions
of SWI/SNF complexes. However, SWI/SNF-mediated chroma-
tin remodeling provides global transcriptional regulation,
hence, its loss of function is unlikely to create all-or-nothing
gene expression changes. Therefore, cooperation with onco-
genic or tumor suppressor mutations in other transcriptional
regulators and cell cycle genes can still be expected, as sup-
ported by recent results in C. elegans.74

Does disrupted SWI/SNF function create cancer vulnerabil-
ities and possibilities for treatment? Loss of SNF5 has been
shown to result in downregulation of the INK4A locus and
upregulation of cyclin D1 expression. Pharmacological inhibi-
tion or genetic ablation of cyclin D1 in rhabdoid tumor cells
inhibited tumor growth, indicating that the elevated levels of
cyclin D in these tumors contribute to their uncontrolled prolif-
eration.141-144 Based on the intimate connection between prolif-
eration and differentiation, simultaneous targeting of cell cycle
and transcriptional regulators may provide efficient and spe-
cific future anti-cancer therapies.
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