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Supplementary Note 1 
Challenge Design 
Due to the rapid pace of new technology introduction, algorithm development for interpreting 
NGS results has been forced to adapt quickly. This has led to a situation in which both the 
sequencing characterization and the analysis software have been poorly characterized in terms 
of their error profiles, which can confound their use in both discovery and clinical applications. 
Here we report the development of BAMSurgeon to generate robust in silico tumour-normal 
pairs, and its use with crowd-sourcing to provide the largest benchmark of somatic SNV-calling 
methods to date. Challenges incentivize collaboration, can lead to innovative solutions or to the 
identification of new problems that can become fodder for new Challenges, accelerate learning, 
help establish community-standards, allow objective prioritization of methods and help build a 
community of researchers around specific and timely problems. There has been a growing trend 
in the use of crowd-sourcing to stimulate research in specific areas1, and DREAM (Dialogue for 
Reverse Engineering Assessment and Methods) has been a leader in promoting this approach 
across multiple problem domains. Recent and ongoing DREAM Challenges in systems biology 
are promoting rigorous performance assessment, development of standards and demonstrating 
how ensemble methods sampled across community predictions can improve upon the work of 
any individual group. Thus structuring benchmark development as a Challenge incentivized 
collaboration and rapid learning, and allowed the Challenge community to assess a broad 
cross-section of current methods efficiently. 
 
The SMC Challenge includes two components (Supplementary Figure 1). To encourage 
participation from researchers in alternate fields, we simulated five synthetic tumours (sub-
Challenges 2A-1 to 2A-5 and 2B-1 to 2B-5) of increasing difficulty and created corresponding 
leaderboards to provide real-time feedback. These five sub-Challenges allow for algorithm 
training prior to the main Challenge (Intel-10 SNV sub-Challenge and ITM1-10 SV sub-
Challenge) in which we provided 10 tumour/normal pairs from real patients (five samples 
derived from prostate cancers and five derived from pancreatic cancers). It is ensured that 
participants have approval of data access by the ICGC Data Access Compliance Office. To 
validate performance on the real tumours, thousands of predicted variants will be sequenced 
using Ion Torrent, an independent sequencing technology. These two stages will allow for 
benchmarking of somatic single-nucleotide and structural variation prediction on synthetic and 
patient-derived datasets. Upon completion of the Challenge, the best performing methods will 
be made available to the community as validated open source pipelines. 
 
The Challenge is run on the Synapse (www.synapse.org) open computational platform. 
Synapse serves not just as a data repository but also as a framework for conducting 
collaborative analysis and sharing and documenting data, models and analysis methods. 
Synapse enables researchers to seamlessly and transparently conduct, track and share their 
ongoing work – building up living research projects in real-time. GeneTorrent client, an open--
source software developed by Annai Systems, is available for local data download. A 
comprehensive description of GeneTorrent features and operation is available on the CGHub 
website: https://cghub.ucsc.edu/docs/user/index.html. Google is offering Google Cloud Platform 
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credits of $2,000 to approved Challenge participants, including free access to contest data in 
Google Cloud Storage. These credits can be used for Compute Engine VMs and other Cloud 
Platform services. Futhermore, free access to Challenge data is provided via a Google Cloud 
Storage bucket, so all computation and submissions can be performed on the Google Cloud 
Platform. 
 

Overall Challenge Findings 
While we have reported here only the results of the first three SMC Challenge tumours, 
participation remains high; to date 387 registrants have submitted 3,132 analyses of 14 
genomes. Our analysis of the results from the first SMC Challenge tumour has yielded several 
important discoveries. First, it has confirmed the widely suspected inter-regional variability in 
error-rates, where variant-calling tool-chains have been optimized towards coding regions. As 
increasing numbers of functional non-coding SNVs are identified2, algorithm-developers will be 
able to use tools like BAMSurgeon to develop algorithms with improved accuracy outside of 
coding regions. Second, the large number of submissions allowed for robust statistical modeling 
of the sequence-characteristics associated with errors. False-positives and false-negatives 
showed distinct characteristics, with only a few variables (e.g. mapping quality, normal coverage 
and base quality) being important for both -- this may guide the quality-evaluation of clinically-
targeted sequencing. Third, our results provide clear evidence that ensemble-based approaches 
comprised of existing algorithms may be an effective way to improve prediction accuracies, as 
shown in several other areas of biology by other DREAM Challenges3-5, and hinted at previously 
for somatic mutation calling6. Fourth, we have shown that sequencing-errors can closely 
resemble real biological discoveries. Ongoing stages of the challenge address structural 
variants and short indels in synthetic tumor-normal pairs. Analysis of the synthetic phases will 
be used to guide later stages of the Challenge when the algorithms are applied to real 
tumor/normal pairs. Finally, comparison of synthetic and real results will feed back into 
BAMSurgeon development efforts, improving the fidelity with which synthetic reads can be 
generated. 
 
An unexpected outcome of this Challenge was an improvement in our ability to accurately 
simulate tumour-normal genomes. Challenge contestants continually offered suggestions 
(including source-code patches and detailed statistical analyses) to enhance BAMSurgeon’s 
simulations. This highlights the value of open-science to foster incremental community-
improvements that yield robust tools of broad benefit. 
 
No algorithm perfectly predicts somatic SNVs on even the simplest tumour (IS1) -- the best 
team achieved an F-score of 0.975. This is high enough to lead to significant artifacts in 
downstream analyses as errors are non-randomly distributed. Surprisingly, reduced tumour-
cellularity did not significantly alter error-rates (IS2), but sub-clonality did: the best methods 
achieved F-scores of ~0.95 in IS3. These data strongly suggest that there remains significant 
room to improve somatic SNV prediction algorithms. 
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Supplementary Note 2 
Related Work 
Existing methods for simulating cancer genomes generally fall into one of two categories: (1) 
simulating reads from a reference genome assembly or (2) spiking in sequence reads that 
support known bona fide mutations into an alignment that lacks the spiked-in mutations. The 
first approach is exemplified by a number of software tools, the most widely used is perhaps the 
wgsim utility (https://github.com/lh3/wgsim), built upon DWGSIM 
(https://github.com/nh13/DWGSIM). Further examples include pIRS7, GemSIM8, SInC9, 
Mason10, ART11, among others. Each of these has varying parameters and some include 
simulation of error models for some subset of sequencing technologies. Examples of the second 
approach where reads from one sample are ‘spiked-in’ to another include the SomaticSpike tool 
used to evaluate the MuTect somatic mutation detection method12, and the datasets generated 
for the SMaSH benchmarking toolkit13. These two general approaches (read simulation and 
spike-in of ‘real’ mutations) both have their merits and demerits; for example, simulating reads 
can simulate any underlying genome mutation or rearrangement as the reference from which 
the simulated reads are generated serves as the ‘ground truth’. The primary drawback is that 
simulated reads cannot recapitulate biases and error profiles if they are not completely known 
for a given combination of sequence technology and sample preparation method - this is a 
reasonably serious drawback given that the sequencing method is a fundamental source of 
error in mutation calls and it is unlikely that the error profile of any given combination of 
sequencing method and sample preparation method is completely specified in a way amenable 
to simulation approaches. Using reads from actual sequencing results that support known 
mutations provides a clear route around this drawback, but with the disadvantage that the sites 
of spiked-in mutations must come from known mutations: any arbitrary site in the genome is 
unlikely to be the site of a mutation present in dbSNP14, COSMIC15 (cancer.sanger.ac.uk), or 
other sources of bona fide validated mutations. Put another way, any ‘spike-in’ mutation must 
have been detectable by some means, therefore simulations using this method could 
conceivably be biased towards mutations already detectable by existing mutation callers, 
thereby limiting the development of callers with improved sensitivity. BAMSurgeon bridges these 
two general approaches to mutation simulation by providing a third alternative: modifying pre-
existing alignments and realigning the modified reads. Through this approach, any arbitrary site 
with adequate read coverage (as defined by the user) can be mutated, and the underlying error 
profile stemming from the sequencing technology and sample preparation method will be 
realistic. 
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Supplementary Figure 1: Challenge Structure

The SMC Challenge consists of two parts. The main challenge 
(Intel-10 SNV Sub-Challenge and ITM1-10 SV Sub-Challenge) 
consists of human tumour data derived from real patients - ten 
tumour/normal paired samples. The second challenge (2A-1 to 2A-
5 and 2B-1 to 2B-5), proceeding the real data in timeline, consists 
of five synthetic datasets increasing in difficulty to allow 
participants to train their tools prior to the real tumour challenge.
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Supplementary Figure 2: Effect of Read Split on Tool 
Performance

To test the robustness of BAMSurgeon to read split, we compared 
the rank of Radia (yellow), MuTect (dark blue), SomaticSniper 
(light blue) and Strelka (light green) on a tumour/normal paired 
dataset with alternate read splitting. Radia and SomaticSniper 
retained the top two positions while MuTect and Strelka remained 
third and fourth, regardless of read split.
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Supplementary Figure 3: Overview of SMC-DNA in silico 
Challenges 2 and 3 Datasets

Precision-recall plot for all entries to IS2 - colours represent 
individual teams, and the best submission from each team by F-
score is outlined (A). We evaluated the performance of an 
ensemble somatic SNV predictor by taking the majority vote of calls 
made by a subset of the top performing submissions on IS2 and 
IS3. Ensemble models created and tested on IS2 – colours 
represent individual submissions while the gray dots represent the 
ensemble model (B). Precision-recall plot for all entries to IS3 (C). 
Ensemble models created and tested on IS3 (D).
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Supplementary Figure 4: Precision and Recall of Ensemble 
Classifier

An ensemble classifier of subsets ranging from 1 to 119 algorithms 
selected from the IS1 submissions was developed taking calls with 
the majority vote across incorporated algorithms. The precision (A) 
and recall (B) of the ensemble classifier (grey) was compared to the 
values of the individual submissions (coloured). Dot colour reflects 
the submitting team. The ensemble classifier was found to have 
higher recall and precision than majority of the individual 
submissions. Similar plots are shown for IS2 precision (C) and recall 
(D), as well as IS3 precision (E) and recall (F).
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Supplementary Figure 5: Permutation Analysis of Ensemble 
Robustness

To evaluate the robustness of the IS1 ensemble classifier we 
randomly sampled algorithms at each subset size 1,000 times and 
evaluated performance (A). The distribution of performance at each 
size threshold reflected the performance seen by subsetting the top 
scoring algorithms giving evidence for the robustness of the method. 
(B) IS2 and (C) IS3.
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Supplementary Figure 6: Evaluation of Overfitting

The delta between recall, precision and F-scores on training (all 
chromosomes but chromosome one) and testing (chromosome one 
only) datasets were plotted for each submission. All delta values 
varied around 0 and never exceed a difference greater than 0.15. 
This shows evidence of little overfitting. (A) IS1, (B) IS2 and (C) IS3.
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Supplementary Figure 7: Correlation of Training and Testing 
Scores

Scatterplots were created showing the relationship between training 
and testing recall (A) and precision (B) for each IS1 submission 
compared to the y=x line. Both showed high degree of correlation 
with Spearman correlation values of 0.96 and 0.98. This is further 
evidence of little overfitting. Colours indicate the submission team. 
Similar results are observed for IS2 recall (C) and precision (D) and 
IS3 recall (E) and precision (F).
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Supplementary Figure 8: Effects of Genomic Localization on in 
silico 2 and 3 Datasets

Boxplot gives median (line), inter-quartile range (box) and ± 1.5 IQR. 
F-scores were highest in coding and untranslated regions (UTR) and 
lowest in introns and intergenic in both (A) IS2 (P = 3.68 x 10-8; 
Friedman Rank Sum Test) and (B) IS3 (P = 1.96 x 10-5; Friedman 
Rank Sum Test). Dot colours represent individual teams. Rows show 
individual submissions to IS2 (C) and IS3 (D), columns show genes 
with non-synonymous SNV calls. The upper barplot indicates the 
fraction of submissions agreeing on these calls, and the colour 
indicates if these are FPs (light purple) or true-positives (dark purple). 
The barplot located to the right gives the F-score of the submission 
over the whole genome. The right-hand side covariate shows the 
submitting team. 
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Supplementary Figure 9: Rank in Genomic Elements

The rank of each submission on each genomic element was 
compared to the submission’s overall rank. Dot size and colour reflect 
the rank, as determined by the F-score, of that submission in that 
genomic element. Ranks in intergenic, intronic and coding show a 
high degree of consistency, however, more variation is seen in 
untranslated regions (UTR). Background shading reflects significance 
of variation as compared to chance alone. (A) IS1, (B) IS2 and (C) 
IS3.
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Supplementary Figure 10: F-score, Recall and Precision 
Correlation in Genomic Elements

Heatmaps show the Spearman correlation of F-scores (A), precision 
(B) and recall (C) between genomic elements in IS1. Intergenic and 
intronic regions show high correlation in all three scores.

Nature Methods: doi:10.1038/nmeth.3407



  

Supplementary Figure 11: Prediction in Exonic Regions of All 
Submissions

SNV calls in exonic regions corresponding to known genes (x-axis) 
were plotted to show the number of submissions that called each 
SNV (highlighted in green) - calls made by the lowest scoring 
submission only were omitted from this subset. The barplot along the 
top indicates the fraction of submissions that called each position, 
while the colour indicates whether the position is a true positive (dark 
purple) or a false positive (light pink). The covariate along the right of 
the plot indicates the team while the barplot on the right shows the 
overall F-score of that submission. (A) IS1, (B) IS2 and (C) IS3.
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Supplementary Figure 12: Recall in Sub-Clones

Boxplot gives median (line), inter-quartile range (box) and ± 1.5 IQR 
for recall of submission in 50%, 33% and 20% sub-clones within the 
IS3 dataset. Dots represent the individual recall scores for each 
submission. Submissions showed higher recall in 50% sub-clones.

Nature Methods: doi:10.1038/nmeth.3407



  

Supplementary Figure 13: Chromosome Bias in Precision and 
Recall for IS1

Boxplots show the distribution of F-Score (A), precision (B) and recall 
(C) on each chromosome of IS1. A noticeable decrease in both 
precision and recall was seen on chromosome 21.
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Supplementary Figure 14: Variation in Chromosome Rank

Variation in chromosome rank (indicated by dot size and colour) and 
overall rank was observed, most noticeably on chromosome 11, 
where the best scoring algorithm ranked fourth. P-values reflecting 
the probability of this variation being seen by chance alone are 
shown submission and chromosome-wise in the background 
shading, chromosome-wise in the top barplot, and submission-wise 
in the right hand side barplot. (A) IS1, (B) IS2 and (C) IS3.
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Supplementary Figure 15: Chromosome Bias in Precision and 
Recall for IS2

Boxplots show the distribution of F-Score (A), precision (B) and 
recall (C) on each chromosome of IS2.
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Supplementary Figure 16: Chromosome Bias in Precision and 
Recall for IS3

Boxplots show the distribution of F-Score (A), precision (B) and recall 
(C) on each chromosome of IS3.
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Supplementary Figure 17: Distribution of Calls in Genome

The genomic location of each call made by the top 6 algorithms was 
plotted against the distance of the the call to the closest 5’ SNV. True 
positives were plotted in green while false positives were plotted in 
purple. The lack of points clustering towards the bottom of each plot is 
evidence that kataegis is not occurring in SNV prediction as the calls 
appear to spread out through the genome. (A) IS1, (B) IS2, (C) IS3.
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Supplementary Figure 18: Univariate Analysis of Genomic 
Factors – Non-Reference Allele Count

Thirteen genomic variables - non-reference allele count (18), reference 
allele count (19), base quality (20), mapping quality (21), tumour 
coverage (22), normal coverage (23), distance to nearest germline 
SNP (24), homopolymer rate (25), GC content (26), read position (27), 
trinucleotide sequence (28) and genomic element (29) - were selected 
to analyze their effect on the number of submissions that made an 
error at each position for IS1. Violin plots show the relationship 
between continuous variables and number of submissions, while 
heatmaps show the relationship between categorical variables and 
number of submissions. Spearman correlation and corresponding p-
values were calculated for continuous variables, while, one-way 
ANOVAs were run on categorical variables.
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Supplementary Figure 19: Univariate Analysis of Genomic 
Factors – Reference Allele Count

Violin plot shows the relationship between reference allele count and 
number of submissions. Spearman correlation and corresponding p-
values were calculated.
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Supplementary Figure 20: Univariate Analysis of Genomic 
Factors – Base Quality

Violin plot shows the relationship between base quality and number of 
submissions. Spearman correlation and corresponding p-values were 
calculated.
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Supplementary Figure 21: Univariate Analysis of Genomic 
Factors – Mapping Quality

Violin plot shows the relationship between mapping quality and 
number of submissions. Spearman correlation and corresponding p-
values were calculated.
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Supplementary Figure 22: Univariate Analysis of Genomic 
Factors – Tumour Coverage

Violin plot shows the relationship between tumour coverage and 
number of submissions. Spearman correlation and corresponding p-
values were calculated.
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Supplementary Figure 23: Univariate Analysis of Genomic 
Factors – Normal Coverage

Violin plot shows the relationship between normal coverage and 
number of submissions. Spearman correlation and corresponding p-
values were calculated.
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Supplementary Figure 24: Univariate Analysis of Genomic 
Factors – Distance to Nearest Germline SNP

Violin plot shows the relationship between distance to nearest germline 
SNP and number of submissions. Spearman correlation and 
corresponding p-values were calculated.
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Violin plot shows the relationship between homopolymer rate and 
number of submissions. Spearman correlation and corresponding p-
values were calculated.

Supplementary Figure 25: Univariate Analysis of Genomic 
Factors – Homopolymer Rate
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Violin plot shows the relationship between GC content and number of 
submissions. Spearman correlation and corresponding p-values were 
calculated.

Supplementary Figure 26: Univariate Analysis of Genomic 
Factors – GC Content
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Violin plot shows the relationship between read position and number of 
submissions. Spearman correlation and corresponding p-values were 
calculated.

Supplementary Figure 27: Univariate Analysis of Genomic 
Factors – Read Position
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Supplementary Figure 28: Univariate Analysis of Genomic 
Factors –Trinucleotide Sequence

Heatmap shows the relationship between trinucleotide sequence and 
number of submissions. P-values were generated from one-way 
ANOVA.
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Supplementary Figure 29: Univariate Analysis of Genomic 
Factors – Genomic Element

Heatmap shows the relationship between genomic element and 
number of submissions. P-values were generated from one-way 
ANOVA.
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Supplementary Figure 30: False Positive and False Negative 
Error Profiles

Variable importance measures showed low correlation between false 
positive and false negative positions for all submissions in IS1 - 
ranging from 0.26 to 0.71. This low concordance indicates largely 
different error profiles for false positive and false negative positions. 
To better visualize false positive and false negative relationship, some 
points that exceeded the limits of the scatterplots were omitted.
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