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Abstract

Increased availability of bioinformatics resources is creating opportunities for the application of network pharmacology to
predict drug effects and toxicity resulting from multi-target interactions. Here we present a high-precision computational
prediction approach that combines two elaborately built machine learning systems and multiple molecular docking tools to
assess binding potentials of a test compound against proteins involved in a complex molecular network. One of the two
machine learning systems is a re-scoring function to evaluate binding modes generated by docking tools. The second is a
binding mode selection function to identify the most predictive binding mode. Results from a series of benchmark validations
and a case study show that this approach surpasses the prediction reliability of other techniques and that it also identifies
either primary or off-targets of kinase inhibitors. Integrating this approach with molecular network maps makes it possible to
address drug safety issues by comprehensively investigating network-dependent effects of a drug or drug candidate.
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Introduction

Drugs may interact with numerous molecules in the human

body. Approximately 35% of known drugs or drug leads present

multi-target activity [1]. Even when a drug is claimed to have high

selectivity, it probably binds to proteins that are not identified as

targets. Such unexpected off-target interactions may result in

adverse reactions, which increase therapeutic risks and negatively

impact drug development. An example of this is the cardiotoxicity

of the tyrosine kinase inhibitor Sunitinib [2]. Concerns surround-

ing the use of this anti-cancer drug have arisen due to its adverse

side effects. Its unanticipated inhibition of members of the

ribosomal S6 kinase (RSK) and AMP-activated protein kinase

(AMPK) families are at least partly responsible for the drug’s

cardiotoxicity [3]. Since more than two hundred proteins

associated with cardiovascular diseases have been identified [4],

treatment with low-selectivity drugs can have many unexpected

effects. In contrast, designing drugs with multi-target therapeutic

application is of increasing interest to the drug discovery

community. Compared with single-target agents, drugs that

regulate multiple proteins have the potential to improve the

balance of efficacy and safety [5], although minimizing their

toxicity remains challenging. As an example, the treatment of

neurodegenerative diseases has progressed a multi-target strategy

[6]. Though some multi-target drugs prove beneficial, their

discovery and the identification of other clinically relevant targets

is often accidental, and their final application may differ radically

from their original design. Sorafenib, for example, was initially

developed as a RAF kinase inhibitor, but its therapeutic

contribution in curing renal and hepatocellular cancers was later

ascribed to its inhibition of VEGFR2 and PDGFR, and probably

other targets as well [7].

To comprehensively assess pharmacological effects, systems

pharmacology has been developed [8,9], in which various

bioinformatics resources assessing different structural levels, from

molecules to systems are integrated. A well-curated, comprehen-

sive molecular interaction network is the focal point of the systems

pharmacological approach. Such a network can reveal causes and

effects of protein interactions over signaling networks, metabolic

networks, and other related pathways. With a deeply curated

network map that describes signaling cascades and interactions

among molecules, one can carry out network-based screening to

systematically identify target proteins of a given drug candidate

and to assess its impact. Thus, network-based screening appears

promising for drug repurposing and safety prediction.

Various bioinformatics resources including biological databases,

signaling network construction tools, and molecular modeling

software have been developed, allowing a great opportunity to

meet the demands of rapid systematic screening. Given the rich
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data and algorithmic resources availability on one side, and urgent

needs to capture poly-pharmacological effects of drugs and

candidates on the other side, one obvious challenge is to develop

a computational method that can accurately predict a drug’s

effects across molecular networks. Doing this requires develop-

ment of high-precision molecular docking simulation systems, and

applying them over molecular networks to compute aggregated

effects of drugs.

Issues in molecular docking simulation
Molecular virtual docking is an efficient computational method

to rapidly calculate the binding potential of a small molecule, such

as a drug or candidate, to a target protein. It is widely used in

computer-aided drug discovery due to its speed and low cost [10].

This method is mainly used to dock a small molecule to a protein

structure (i.e. pose generation) and to evaluate its potential

complementarity with the defined binding site (scoring). Studies

assessing the performance and accuracy of various commonly used

molecular docking programs indicate that those packages are able

to perform pose generation well, since most of the generated

binding modes are conformationally similar to the corresponding

co-crystallized ligands, but their scoring functions are still too

inaccurate for a reliable prediction [11–13]. Plewczynski and

colleagues evaluated seven popular docking programs, including

Surflex [14], LigandFit [15], Glide [16], GOLD [17], FlexX [18],

eHiTS [19] and AutoDock [20] on the PDBbind database [21].

The best Pearson correlations between predicted binding affinities

(or scores) and experimental values were 0.38 or lower [13]. Thus,

correctly predicting the binding affinity of a given protein-ligand

complex continues to be one of the most challenging issues in

docking simulation. Scoring algorithms such as X-Score [22] and

RF-Score [23], have attempted to improve accuracy, and the best

Pearson correlation value measured was 0.776 [23]. However, this

correlation was obtained only in an ideal situation where binding

interactions of co-crystallized complexes were directly evaluated

without considering the influence of the pose prediction that is

required to re-dock the native ligand to its target protein prior to

scoring. When performing both pose generation and scoring

function, the correlation might decrease.

In order to overcome these problems in docking simulation,

multiple docking tools plus scoring functions can be applied to a

given docking study to improve performance (Figure S1). This

yields more than one score for each test and the best among them

is identified by referring to the corresponding experimental

binding affinity. Correlations can be improved from 0.61 to

0.84, depending on the tools used. However, it should be noted

that the highly accurate correlation of 0.84 was achieved by

manually selecting the best predictions from multiple simulators.

For this approach to be practical, the best prediction from multiple

simulators has to be selected automatically. To accomplish this, we

developed a novel scoring approach employing two machine

learning systems, which were embedded as a part of a pipeline

implementing a network-based screening approach that integrates

curated signaling networks, bioinformatics databases, and molec-

ular docking simulation to comprehensively and rapidly evaluate

potential binding affinities of given drugs against proteins involved

in a signaling network.

Results

Machine learning systems for improving docking
simulation

The first machine learning system we employed (A) was a re-

scoring function developed to assess binding modes generated by

docking tools and to rank them accordingly. Machine learning

system B was a binding mode selection function designed to

identify the most predictive binding mode from those originated in

the previous step. A test case for these two systems is illustrated in

Figure S2. Both systems were built and validated by using the

PDBbind version 2007 refined set which contains 1300 protein-

ligand complexes and is considered a high-quality standard dataset

for theoretical studies on molecular recognition.

1. Machine learning system A: a re-scoring

function. Reliability of docking simulations depends upon

performance of the scoring function. A recent developed method

known as RF-Score [23] allows better predictions compared with

other scoring functions. RF-Score applies a non-parametric

machine learning algorithm called Random Forest [24] to predict

protein-ligand binding affinity by assessing the number of

occurrences of various protein-ligand interatomic contacts (Sup-

plementary Table S1) within a specified distance. We adopted and

further revised RF-Score in this work, so that we not only

considered intermolecular interactions, but also included the

quantitative structure–activity relationship (QSAR) in the machine

learning model in order to extend its modeling assumptions.

Molecular physicochemical properties of test compounds were

parameterized as predictors in the modeling exercise (Table S2).

2. Machine learning system B: a binding mode selection

function. Following the re-scoring function, the second machine

learning system developed in this work was a binding mode

selection function, designed to assess binding modes and to identify

the best predictor (Figure S3). This learning system used a

multinomial logistic regression method [25]. It employed super-

vised learning algorithm capable of predicting probabilities of

categorical placement among more than two discrete outcomes,

based on a set of independent variables. Similar to binary logistic

regression, multinomial logistic regression uses maximum likeli-

hood estimation to calculate the probability of categorical

outcomes and allows different types of independent variables in

building a model. In the present study, independent variables were

the same as the predictors used in machine learning system A.

Predicted categorical outcomes include the three top-score binding

modes generated by docking tools, including eHiTS, GOLD and

AutoDock VINA [26]. Through the binding mode selection

function, molecular interactions of the three binding modes

together with molecular properties of the test compound were

assessed, and finally one of them was selected which was predicted

as most reliable for a particular docking study.

3. Validation using PDBbind benchmark. The perfor-

mance of screening with these two machine learning systems was

validated on the demanding PDBbind benchmark. For testing with

less bias, the validation was conducted with a re-docking

experiment (Materials and Methods). Of the 1,300 complexes,

195 structures (15%) were randomly selected as the test set and

remaining 1,105 structures were employed as the training set

(85%). The training process with the random test/training

partition was iterated 25 times in order to comprehensively assess

the effects of varying the dataset. Pearson correlations between the

predicted scores and corresponding experimental binding affinities

were measured.

Application of external re-scoring functions (i.e. X-Score and

RF-Score) improved correlations compared with the employment

of docking simulations alone using the default functions equipped

in the docking tools (Figure 1). Application of machine learning

systems A + B was the most effective (R = 0.82, average of 25 tests).

When the benchmark data were replaced with the newer PDBbind

version 2012, refined set (2,897 complexes) with the same

validation procedure, machine learning systems A + B also

Multiple Docking Simulation Improves Prediction
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showed a strong correlation (average R = 0.76). For more

extensive testing, we applied machine learning systems built with

a training set (1,105 complexes from PDBbind 2007) to predict a

larger test set composed of 1,792 new complexes found in

PDBbind 2012. Unlike the previous validations with a test/

training partition of 15%, the ratio in this test increased to 162%

(1,792 V.S. 1,105). Not surprisingly, the average correlation

(R = 0.65) was not as strong as observed in the previous validation,

but it still presents a competitive performance compared with

other methods [13]. These results indicate that the application of

multiple docking tools together with the predictive machine

learning systems is capable of estimating the ligand binding

strength better than the use of a single docking tool and other

scoring functions. Some of the consensus methods [27–29] apply

multiple docking tools and combine the reported scores through

weighting or normalizing methods for the consensus procedure.

Unlike those methods, our screening approach reports a score

which is a negative logarithm of experimental dissociation/

inhibition constant value (pKd/pKi) usually ranging from 0 to 10

(i.e. from weak to strong binding), allowing a straightforward

indication of binding strength.

The re-scoring function (i.e. machine learning system A) is

essentially a learning model built upon a training set from co-

crystallized complexes in PDBbind with a range of experimentally

determined binding affinities. The learning model was capable of

predicting the strength of binding, but was not necessarily able to

recognize a compound’s activity (i.e. bound or not bound to a

target protein), because information about unbound compounds

(inactive) was absent from the training data. In order to introduce

information about inactive substances into the learning model, we

added a substantial number of dummy entries to the training set,

which are the binding modes of a set of test compounds against

various proteins (Tables S3 and Table S4) generated by docking

tools. While the test compounds were experimentally confirmed as

inactive against target proteins, their binding affinity values (pKd/

pKi) were set to 1. Consequently, the machine learning model

contained information on both groups of compounds (i.e. active

and inactive).

A case study of target identification for kinase inhibitors
Karaman et al. proposed a quantitative analysis of kinase

inhibitor selectivity against a substantial number of kinases using

an in-vitro competition binding assay [30]. Because that study

analyzed global observed interaction patterns of numerous

compounds against diverse kinases, it was of great interest to

assess the consistency between bioassay results and our predictive

approach. Considering structure availability and binding site

certainty, we selectively downloaded a set of co-crystallized kinase

structures from the PDB database [31] (Materials and Methods).

Finally, we selected 139 different kinases in 8 kinase groups for

docking simulations (Table S5). Tested compounds include 33

kinase inhibitors interacting with various primary targets (Table

S3). Karaman et al. proposed the calculation of a selectivity score

(S) for each test compound, dividing the number of kinases

interacting with a dissociation constant ,3 mM by the number of

kinases tested. A lower selectivity score indicates that a compound

only interacts with a small number of target proteins, implying a

lower potential for off-target effects. This constant (3 mM) is equal

to a docking score 5.52 pKd using a negative logarithmic

calculation, so we set 5.52 pKd as our cutoff value to ‘‘predicted

selectivity score (S) = number of kinases docked with score

.5.52/total number of kinases tested’’. For example, if a test

compound is docked to 100 different target proteins and 45 have a

docking score .5.52, its selectivity score is 0.45.

The majority of the predicted selectivity scores were similar to

experimentally measured values (Figure 2), though the screening

approach tended to overestimate binding affinity in some cases.

Some of the predicted selectivity scores are fairly high compared

Figure 1. Comparison of prediction accuracy using different docking approaches. Validation data included the 1300 protein-ligand
complexes of PDBbind version 2007. Values were the correlations between calculated docking scores and corresponding experimentally determined
binding affinities. Black bars indicate results using default scoring functions equipped with docking tools. Gray bars are those re-scored with external
scoring functions (e.g. X-Score and RF-Score) after docking. Red bars represent averages of 25 random test/training partition tests using machine
learning systems A + B, and the one with an asterisk is the test using PDBbind version 2012 (2897 complexes) dataset. Error bars = 6 one s.d.
External re-scoring functions improved the correlations compared with the employment of docking simulations alone. The application of machine
learning systems A + B was the most effective.
doi:10.1371/journal.pone.0083922.g001
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with the referred bioassay. The docking scores of each compound

against the kinases are tabulated in Table S6. The screening

approach succeeded in identifying a half of the primary target

proteins (50% of 50), and when a tolerance is given (docking score

.4.52 as cutoff value for calculating selectivity score) it identified

68% of them. Figure 3 shows the performance of the 15 high-

selectivity inhibitors in identifying the off-targets. Off-target

proteins are proteins other than primary targets that interacted

with an inhibitor with a binding affinity ,3 mM (Karaman et al.

[30]). The screening approach was able to recognize one or more

off-targets for the most of inhibitors, and was only clearly

unsatisfactory in the cases of compounds SB_431542, PI_103,

and CP_690550. For instance, compound GW-2580 was origi-

nally designed to interact with CSF1R kinase (Kd = 1.6 nM in

bioassay). Through screening, a potential off-target protein known

as TRKB was suggested (docking score = 6.03) and its bioassay

also indicated a stronger binding affinity (Kd = 36 nM). Similarly,

the docking simulation revealed that EGFR is also a likely off-

target for CP_724714 (docking score = 8.11 and experimental

Kd = 42 nM). Overall, the screening approach succeeded in

finding more than 32% of off-targets (25 out of 78) of the 15

selective inhibitors, and this score was improved (,41%) when a

tolerance was given.

Integrating into a network-based screening system
The system described in this article is a plug-in to CellDesigner

[32], enabling molecular docking simulations to be performed with

specified molecules in a network loaded to CellDesigner (Figure 4).

CellDesigner is one of the most widely used graphical editors for

deep curation [8] and is capable of capturing a large-scale

signaling network consisting of more than a thousand molecular

species and reactions [33].

For the sake of simplicity, we used a simple EGFR signaling

network edited by CellDesigner as an example, although a large-

scale comprehensive network would be used for real cases. The

EGFR network describes signaling cascades of 14 different

proteins with 27 known reactions (Figure S4). Identities of the

proteins (i.e. protein names) shown on the network map were first

retrieved by the CellDesigner plugin API, to look up the referred

protein structures in 3D through a protein identity-to-structure

mapping system. Protein identity information stored in the

mapping system was mainly obtained from EMBL-EBI [34],

and 3D structures deposited were from the PDB database.

Through the plug-in GUI interface, users can quickly select

structures of proteins listed on the network for large-scale

screening. By default, the protein binding site for subsequent

docking simulation is automatically defined as that to which the

Figure 2. Selectivity scores of 33 kinase inhibitors against 139 kinases. A comparison was conducted using the screening approach
proposed in this study (blue bars; PDB IDs from Table S5) and bioassay results [30] (red bars). The calculation of a predicted selectivity score is ‘‘S =
number of kinases docked with score pKd .5.52/total number of kinases tested’’, whereas the experimental selectivity scores is ‘‘S = number of
kinases found to bind with Kd ,3 mM/number of kinases tested’’. A compound with a lower selectivity score indicates that it actively interacts with a
small number of target proteins, implying a lower potential for off-target effects. Trendlines are the 2nd order polynomial regression functions. In
most cases, screening accurately predicted the actual calculated binding constants; however, in some cases, screening predicted significantly higher
binding constants than experimental data revealed, while no significant underestimates were observed.
doi:10.1371/journal.pone.0083922.g002
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biggest native ligand of the co-crystallized complex binds. If only

an orphan protein structure is available or an alternative site is

preferred, users can easily specify another site through the plug-in.

Users can upload a reasonable number of test compound

structures in 1D, 2D, or 3D, and the screening pipeline accepts

most common formats, such as MDL SDF [35], Sybyl Mol2 [36]

and Daylight SMILES [37]. Alternatively, users can compose a

compound structure manually using a built-in chemical editor

[38].

Following structure file preparation, docking simulation is then

carried out using multiple docking tools, including eHiTS, GOLD,

and AutoDock VINA. Machine learning systems A + B were then

applied to evaluate the binding potential between the test

compound and a protein. Screening was iterated to assess

subsequent proteins until all of the pathway proteins have been

tested. Subsequently, docking scores, that is, the predicted binding

affinities of the test compound against all of the network proteins,

are converted into a white-to-red color scale from 0 to 10 (pKd/

pKi; see Figure 4). A docking score that exceeds the range is set as

10. Colored results are then projected to the network map to

directly display predicted binding affinities. Proteins in gray

indicate cases in which 3D structures were not available, or none

of the binding modes is generated by the docking tools. Through

the colored network map generated by the system, users can

efficiently investigate potential bioactivity of a test compounds

against numerous proteins and can also carry out a perspective

inspection for the results throughout a complex signaling network.

For example, a test compound had a strong interaction with MEK

protein. As a consequence, not only MEK might be functionally

impaired, but the phosphorylation of all downstream target

molecules (e.g. ERK and RSK2) would be inhibited, negatively

impacting regulation of the cell cycle. Blocking MEK-ERK-RSK2

signaling results in reduced activation of several transcriptional

regulators of proliferative genes in tumor cells (e.g. melanomas and

myeloma) and suppresses cell growth [39]. In addition, side effects,

such as dermatologic toxicity caused by MEK inhibitors, have

been reported because inhibition of MAPK signaling causes

decreased cell migration, keratinocyte cell death, and inflamma-

tion [40]. Since Figure S4 presents a very simple pathway map, it

does not show possible interactions with proteins in other

pathways. However, the use of larger, more comprehensive maps

for the EGFR pathways [41], Toll-Like Receptor pathways[42]

and mTOR pathways [33], or maps developed for specific

biological processes related to potential side-effects, would uncover

such risks.

Discussion

Docking simulation, a screening method to rapidly assess a test

compound’s binding activity, is especially helpful in early stage

pharmacology studies. We developed a docking method using

machine learning approach, which integrates features of structure-

based rational drug design and QSAR into the learning models to

enhance performance in molecular recognition. Docking simula-

tion conducted by machine learning systems A + B provides

improved reliability in predicting binding potentials and the

capability of identifying potential targets. To achieve more

accurate prediction, further integration of other computer-aided

technology is feasible, such as the application of molecular

dynamics (MD) after docking. Together with a curated signaling

map, the network-based screening approach is able to compre-

hensively characterize the underlying mechanism of a drug

candidate’s activity and also to interpret the cascade effects of

modulated targets. Adverse side effects constitute an enormous

cost in drug development. By applying network-based screening,

drug developers can reduce the possibility of marketing a drug

with unfavorable drug-target interactions. On the other hand, it

also provides an opportunity to rationally optimize inhibitor

Figure 3. Performance of screening in identifying potential off-targets of 15 high selectivity kinase inhibitors (experimental
selectivity score S ,0.1). Off-target proteins are those other than the primary targets that interact with inhibitors with a binding affinity ,3 mM
(Karaman et al. [30]). Blue bars are off-targets that the screening approach succeeded in finding (docking score .5.52; 25 out of 72 off-targets found).
Yellow bars indicate those with a tolerance (docking score .4.52; 7), whereas red bars indicate failure of the screening approach to locate any off-
target proteins (46 in total).
doi:10.1371/journal.pone.0083922.g003
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Figure 4. Schematic of the signaling network-based screening pipeline. First, a signaling network is launched by CellDesigner. The identities
of proteins involved in the network are retrieved by the CellDesigner plugin API to look up corresponding protein structures in 3D through a protein
identity-to-structure mapping system. Second, users submit test compounds for docking simulation. After docking simulation using three docking
tools, machine learning system A is then applied to re-score generated binding modes based on features of binding interactions and the test
compound’s molecular properties, after which, it ranks them. Machine learning system B is subsequently to select a binding mode with the greatest
reliability from the three top-score modes. Screening is iterated to assess the next protein until all pathway proteins have been tested. Finally,
docking scores are converted into a white-to-red color scale to interpret binding strength, and are projected on the network map for a
comprehensive inspection.
doi:10.1371/journal.pone.0083922.g004
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polypharmacology for treating complex diseases, such as cancer,

neurodegenerative disorders, cardiovascular disease, and meta-

bolic syndromes.

Materials and Methods

Re-docking experiment for model validation
1. Molecular structure files: Protein-ligand complex files for re-

docking experiments were obtained from the PDBbind database.

To validate predictive models with less bias, native ligands of the

co-crystallized complexes were first extracted and converted into

2D using Open Babel [43]. For the following docking simulation,

2D structures were then re-converted to 3D using a 3D structure

generator called CORINA version 3.4 [44].

2. Molecular docking simulation packages: Native ligands were

docked to their corresponding target proteins using eHiTS,

GOLD, and AutoDock VINA (Table S7). These docking tools

are used to generate numerous binding modes of the test

compound in a defined binding site, and the number of binding

modes generated varies with the docking tools. For a docking

simulation, eHiTS was set to output 1000 conformations for each

docking study. Considering the computing speed of GOLD, we set

the maximum as 300. The maximum binding mode of AutoDock

VINA varies with an energy range of 10 (kcal/mol).

3. Application of machine learning systems: Binding modes

generated by the three docking tools were re-scored by machine

learning system A, and only the three top-score candidates in each

set were retained. Subsequently, machine learning system B

assessed the three top-score candidates and identified the most

predictive one. Modeling exercises of the machine learning

systems A and B were conducted using the R statistical package.

The Random Forest algorithm was applied to build machine

learning system A, which was implemented in ‘‘randomForest’’

(Breiman and Cutler’s random forests for classification and

regression) module. For machine learning system B, the multino-

mial logistic regression of ‘‘nnet’’ (Feed-forward Neural Networks

and Multinomial Log-Linear Models) and ‘‘MASS’’ (Modern

Applied Statistics with S. Fourth Edition) modules was utilized.

4. Re-docking result: The Pearson correlation coefficient

between the predicted docking scores and the experimental

binding affinities was calculated using R to determine the

predictiveness of the screening approach.

Case study of target identification for kinase inhibitors
1. Protein structure files: protein structures collected from the

PDB database complied with the following criteria: 1) X-ray

structures with resolution of 2.5Å or better, if available 2) if two or

more structures were available, that with the best solution was

selected 3) a structure with a ligand bound to its nucleotide binding

site was selected 4) non-modified and non-phosphorylated residues

found in the binding site were selected with priority 5) the

organism was human.

2. Test compound files: test compound structure files in 2D

format were downloaded from PubChem, and converted into 3D

using CORINA version 3.4 for the docking simulation.

3. Molecular docking simulation: the use of the docking tools

was the same as mentioned in the re-docking experiment.

Supporting Information

Figure S1 Performance of docking simulations applying multiple

docking tools and scoring functions to the PDBbind database in

order of measured Pearson correlations between docking scores

and experimental binding affinities. Four docking programs and

two scoring functions were paired to form a set of unique

combinations (at least three pairs in each combination):

D(i)f g4
i~1~ eHiTS 2009,eHiTS 2012,GOLD,AutoDockVINAf g

S(j)f g2
j~1~ X� Score,RF� Scoref g

K3ƒ D,Sð Þ~
X8

l~3

8
l

� �

where D and S were docking programs and scoring functions,

respectively. K3# (D,S) represents the sum of all possible unique

combinations, in each of which the number of paired tools varied

from three to eight. There were 219 unique combinations in total.

In docking tests, each of the native ligands was re-docked to its

target proteins using individual docking programs and re-scored

with the scoring functions. A best score in every docking study was

then identified manually, which was closest to the corresponding

experimental binding value. As a result, the one uses eight paired

tools can give a best correlation (R = 0.84), whereas the lowest is

0.61 while only three paired tools (E_F_G) are used.

(TIF)

Figure S2 Use of two machine learning systems in a docking

study. A test compound is firstly docked to the target protein using

three docking tools. Three sets of binding modes are generated by

these docking tools and the number of binding modes is varied by

the docking tools (eHiTS: 1000; GOLD: 300; VINA: #1000).

According to the features of binding interactions (36 atomic

contacts) and the test compound’s molecular properties (74

descriptors), machine learning system A rescores and ranks all

of the binding modes. Only the top-score binding mode in each

set is kept. Afterward, based on the characterized binding

interactions and molecular properties, machine learning system

B is then applied to calculate the probabilities for the three top-

score binding modes. The mode with highest probability is

considered the most reliable for this docking study. In this case

the binding mode generated by GOLD with its score is predicted

to be the closest to the corresponding experimental binding

affinity.

(TIF)

Figure S3 Performance of machine learning system B in

identifying the most predictive binding modes in order of

measured success rate. PDBbind complex structures are used to

perform the re-docking experiment using the tools mentioned in

Figure S1. There were 219 unique combinations in total. In a re-

docking experiment, a native ligand was re-docked to the target

protein using different tools. The machine learning system was to

assess the generated binding modes and to eventually select one of

them. It was defined as a successful prediction when the docking

score of the selected mode were closest to the corresponding

experimental binding affinity. The black solid line is the success

rate using the machine learning system, whereas the gray dashed

line represents the result using random selection as a contrast.

Given the obvious difference between the results, the machine

learning approach is clearly capable of identifying the most

predictive binding mode for a particular docking study.

(TIF)

Figure S4 Simple EGFR signaling network edited by CellDe-

signer using SBGN (Systems Biology Graphical Notation). From
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the binding of EGF to EGFR on cell membrane to the catalysis of

CREB and c-Myc within nucleus, there are 14 different proteins

with 27 known reactions on the map. Upon recruitment of FGR-

FGFR-Shc-Grb2-SOS complex, binding of GTP to Ras is

induced, followed by formation of the GTP-Ras-Raf1 complex.

Phosphorylation of the GTP-Ras-Raf1 complex is catalyzed by

PAK and Src, leading to a series of subsequent phosphorylations of

MEK, ERK and others.

(TIF)

Table S1 Interaction types of the 36 interatomic contacts used in

the development of both machine learning systems A and B.

Contacts of atoms (C, N, O, F, P, S, Cl, Br and I) between the

ligand and protein within a distance of 12 Å were counted. There

were 81 different atom pairs, of which 45 were omitted in this

study because none of PDBbind complexes contains F, P, Cl, Br or

I atoms. As an example, C_C indicates the interaction type in

which carbon atoms of a ligand interact with protein carbon atoms

within a 12 Å radius. The number of occurrences of this

interaction was counted.

(DOCX)

Table S2 Descriptions of the 74 molecular physicochemical

properties used in the development of machine learning systems A

and B. There were separated into six groups. These molecular

properties were calculated using the Dragon software package

(http://www.talete.mi.it/).

(DOCX)

Table S3 Compounds composing the training set for building

the re-scoring function of machine learning system A. Chemical

figures were obtained from PubChem website, and information

about primary targets came from the work of Karaman et al.30.

(DOCX)

Table S4 Proteins for generating binding modes that composed

the training set comprising the re-scoring function of machine

learning system A.

(DOCX)

Table S5 Kinase proteins for the case study using the screening

approach proposed in present work. There were 139 different

kinase structures covering eight kinase groups in total.

(DOCX)

Table S6 The docking scores of each compound against 139

kinases.

(XLSX)

Table S7 Parameters and settings for the docking simulation in

this work.

(DOCX)
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