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Many stimuli pull the necrotic trigger, an overview

N Vanlangenakker'?, T Vanden Berghe'? and P Vandenabeele* '

The lab of Jiirg Tschopp was the first to report on the crucial role of receptor-interacting protein kinase 1 (RIPK1) in caspase-
independent cell death. Because of this pioneer finding, regulated necrosis and in particular RIPK1/RIPK3 kinase-mediated
necrosis, referred to as necroptosis, has become an intensively studied form of regulated cell death. Although necrosis was
identified initially as a backup cell death program when apoptosis is blocked, it is now recognized as a cellular defense
mechanism against viral infections and as being critically involved in ischemia-reperfusion damage. The observation that RIPK3
ablation rescues embryonic lethality in mice deficient in caspase-8 or Fas-associated-protein-via-a-death-domain demonstrates
the crucial role of this apoptotic platform in the negative control of necroptosis during development. Here, we review and discuss
commonalities and differences of the increasing list of inducers of regulated necrosis ranging from cytokines, pathogen-
associated molecular patterns, to several forms of physicochemical cellular stress. Since the discovery of the crucial role
of RIPK1 and RIPK3 in necroptosis, these kinases have become potential therapeutic targets. The availability of new
pharmacological inhibitors and transgenic models will allow us to further document the important role of this form of cell death in
degenerative, inflammatory and infectious diseases.
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Facts e Are common executioner mechanisms operating in regu-
lated necrosis elicited by different stimuli?
e The kinase activities of RIPK1 and RIPK3 are crucial for o Are there common or differential biomarkers for necrosis
necroptosis. triggered by different stimuli?
e The FADD/caspase-8 apoptotic platform negatively o \which are the molecular nodes and regulatory mechanisms
regulates RIPK1/3-mediated necroptosis. that determine the cellular cell death outcome initiated by

e RIPK1 and RIPK3 kinase activities contribute to patho-
genesis in IR injury, pancreatitis, photoreceptor cell loss
and intestinal epithelial cell loss.

e RIPK1 and RIPK3 kinase activities contribute to an
appropriate immune response during viral and microbial
infections.

e Some forms of regulated necrosis act independently of
RIPK1 or RIPK3 kinase activity.

Open Questions

e What is the point of convergence of the molecular
mechanisms initiating regulated necrosis elicited by
different stimuli?

different stimuli?
o How are RIPK1 and RIPK3 kinase activities connected with
the execution mechanisms of necroptosis?

The term ‘necrosis’ originates from the Greek word ‘nekros’,
which is translated as ‘dead body’. Necrosis is morphologi-
cally characterized by rounding of the cell, a gain in cell
volume (also known as oncosis), organelle swelling, lack of
internucleosomal DNA fragmentation, and plasma membrane
rupture.” As a consequence of plasma membrane permeabi-
lization and cell lysis, the intracellular content is spilled
and the damage-associated molecular patterns (DAMPS)
may modulate inflammation. Necrosis, as a form of
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caspase-independent cell death (CID), has for a long time
been regarded as an accidental, uncontrolled mode of cell
death. However, accumulating evidence shows that some
forms of necrosis actively involve defined signaling pathways
that contribute to the cellular demise, as is the case for
apoptosis. The connotation of ‘caspase-independent’ is not
completely correct, because in case of TNF (tumor necrosis
factor)-induced necroptosis, caspase-8 apparently negatively
regulates necrosis and its inhibition in fact strongly sensitizes
cell death.? The term ‘pyroptosis’ has been introduced by
Cookson and colleagues®* to describe necrotic-like cell death
that depends on caspase-1 activation, which has an essential
role in the proteolytic activation of pro-IL1f, which once
released, acts as a pyrogen. Because of its dependency on
caspase-1 activity, this type of cell death is confined to
caspase-1-expressing cells such as monocytes, dendritic
cells, epithelial cells and keratinocytes.>” Whether other
inflammatory caspases such as caspase-11 in mouse, and
caspase-4 and -5 in human, are functionally redundant in their
capacity to mediate pyroptosis is unclear. How caspase-1 is
precisely implicated in the cell death process through the
activation of the IL1S5 release mechanism via pore
formation,® proteolysis of cell death-associated substrates,®
or a combination of both is unclear. Because of the
morphological similarities between pyroptosis and necrosis,
such as cytoplasmic swelling and plasma membrane
rupture and consequently release of the intracellular
content,®'° it is tempting to speculate that common execu-
tioner mechanisms such as those leading to osmotic swelling
may be partially involved.

Different forms of necrotic cell death can be distinguished
based on their initiating mechanisms. Much of the knowledge
is based on the study of TNF-induced necroptosis.'"'2
Necrosis dependent on the kinase activities of receptor-
interacting protein kinase 1 (RIPK1)'3'® and RIPK3'¢"'® has
been defined as necroptosis.'*'® The necrotic process can be
subdivided into several subroutines: preconditioning, initia-
tion, propagation, execution and exposure or release of
DAMPs. Preconditioning toward TNF-induced necroptosis
includes increased glycolysis and glutaminolysis, '82%2!
which increase the metabolic flux toward the Krebs cycle. In
the propagation and execution phase of TNF-mediated
necroptosis, the mitochondrial complex I-mediated production
of reactive oxygen species has been shown to be crucial, as
well as lipid peroxidation and lysosomal leakage?®? (Figure 2e).
Because these necrotic executioner mechanisms are not
within the scope of this review, the reader is referred to earlier
reviews for detailed descriptions. %23

We will also discuss the initiation process as similar
mechanisms may also be implicated in necrosis elicited by
other stimuli. TNF-induced necroptosis is highly modulated by
proteolysis, ubiquitylation and deubiquitylation events, and
kinases (Figure 1). An important regulator of necroptosis is
cylindromatosis, which has been shown in cells?* and in vivo
in intestinal epithelial cells.?® This deubiquitylase counteracts
the activity of ubiquitylating enzymes such as cellular inhibitor
of apoptosis protein 1 (clAP1), which is involved in survival
signaling.262® Also the linear ubiquitin chain assembly
complex, involved in the linear ubiquitylation of NF-xB
essential modifier, is crucial in survival signaling®®*° and its
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counteraction promotes cell death.2°=2 In addition, trans-
forming growth factor-f-activated kinase 1 negatively reg-
ulates the formation of a cell death-inducing complex.®*
Recently, an important negative regulatory mechanism of
necroptosis has been repeatedly reported by the finding that
the embryonic lethality in mice lacking Fas-associated protein
via a death domain (FADD) or caspase-8 is due to massive
necrosis and can be rescued by RIPK1 or RIPK3 deletion,
respectively.>*3” Moreover, caspase-8 forms with its en-
zymatically inert homolog cellular FLICE-like inhibitory protein
long (cFLIP.) an active complex that prevents RIPKS-
dependent necroptosis.®® These data demonstrate that FADD
and caspase-8, but also cFLIP,, counteract RIPK1- and
RIPK3-dependent necroptosis during development.®®3"
More than 13 years ago, the concept of an anti-necrotic role
of caspase-8 was already suggested by Vercammen et al.,?
who reported on the observation that CrmA-transfected L929
cells were more sensitive to TNF-mediated necroptosis. In
addition, the loss of RIPK3 rescues caspase-8-deficient
T-cells from their defective proliferation, which is caused by
necroptosis and results in lymphoproliferative disease,33®
indicating also a role for necroptosis during lymphoid
homeostasis. The critical role for caspase-8 and FADD in
suppressing RIPK3-mediated necroptosis during intestinal
homeostasis has been recently confirmed.?>3° Indeed,
conditional deletion of FADD?® or caspase-8%° in intestinal
epithelial cells leads to spontaneous necrotic cell death of
Paneth cells and goblet cells, and an enhanced susceptibility
to colitis, which was rescued by genetic deletion of RIPK3%®
or treatment with the RIPK1 kinase inhibitor necrostatin-1
(Nec-1)."*153 |mportantly, enhanced levels of RIPK3 in
human Paneth cells and increased necroptosis in the ileum of
patients with Crohn’s disease were identified, strongly
suggesting a role for necroptosis in the pathology of this
disease.®® Also ablation of caspase-8 in keratinocytes leads
to enhanced necroptosis®® and inflammation.*' Similar to the
observations in these epithelial cell pathologies, necrotic cell
death has also been observed upon acute liver injury in liver
specific caspase-8-deficient mice.*?> Furthermore, RIPK3-
dependent necroptosis in particular has also been observed
during pancreatitis’ and photoreceptor cell loss*® and it
serves as a defense strategy against viral infections.'®*4
Pharmacological inhibition by administration of Nec-1, an
allosteric inhibitor of RIPK1 kinase,' ' showed that RIPK1
kinase activity contributes to brain'**® and myocardial*®
ischemia-reperfusion (IR) injury. Together, these studies
demonstrate the (patho)physiological importance of targeting
RIPK1 and RIPK3 kinase activity. However, the observation
that Nec-1 inhibits a pathology does not directly imply a
role for necroptosis in that pathology. It is clear that under
conditions of IAP inhibition also RIPK1-mediated apoptosis
can occur.*”"%° It is therefore conceivable that the in vivo
efficiency of Nec-1 is related to interfering both with necro-
ptotic as well as apoptotic processes. The rescue of a lethal
phenotype in RIP3 knockout is often used as an argument for
the implication of necroptosis. However, strictly spoken, as no
clear biochemical markers of necroptosis are available, this
should still be considered with caution (see below).

A growing list of triggers such as cytokines, pathogen-
associated molecular patterns (PAMPs), alkylating DNA
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Figure 1

Breaks and gears on TNF-induced necroptosis. Upon TNF stimulation, TNFR1 complex I, important for cell survival and inflammatory signaling, is formed at the

plasma membrane. Within this TNFR1 complex I, A20, an ubiquitin-editing enzyme, clAP1, an ubiquitylating enzyme, LUBAC, a linear ubiquitylating enzyme complex, and
TAK1* negatively regulate TNF-induced necroptosis in L929sA cells. The transition from TNFR1 complex | to the cytosolic death-inducing TNFR1 complex Il requires the
activity of cylindromatosis (CYLD), a deubiquitylating enzyme. The composition of TNFR1 complex Il determines the cell death outcome: apoptosis or necroptosis. Within
TNFR1 complex II, the apoptotic machinery FADD, c-FLIP and caspase-8 suppresses the induction of necroptosis, which requires the kinase activity of RIPK1* and RIPK3*.

*Refers to the implication of the kinase activity in the function indicated

damage, excitotoxins, irradiation or oxidative stress can
initiate necrotic cell death (Table 1), showing an emanating
paradigm of an intricate interrelation between necrosis and
inflammation.'®%! However, it should be noted that cell death
initiated by these triggers is not limited to necrosis because
depending on the cellular context, other cell death modalities
such as apoptosis and pyroptosis can also occur. In this
review we describe the triggers that are known to induce
necrotic cell death in certain conditions, which does not
exclude that they may also elicit other types of cell death. We
will discuss the similarities and differences in necrosis initiated
by these stimuli (Figure 2 and Table 1).

How to Determine Necrosis?

To date, there are no specific positive discriminative bio-
chemical biomarkers for the in situ detection of necrosis
in vitro and in vivo. The release of intracellular proteins such
as high-mobility group box 1 protein (HMGB1)*? and
cyclophilin A (CypA)®® has been proposed as a candidate
necrotic biomarker. However, HMGB1 and CypA can also be
passively released from cells dying by secondary necrosis
following apoptosis®®®* or actively secreted from activated

immune cells or cells dying from pyroptosis.>®°® Seemingly,
what is really distinctive is not the release itself but the
immunostimulatory activity of HMGB1. During apoptosis,
HMGB1 undergoes oxidation, which neutralizes its immuno-
stimulatory activity,>* whereas in contrast, necrotic cell debris
from HMGB1-deficient cells showed an impaired induction of
proinflammatory cytokines.>” Beside HMGB1 release, the
ratio between caspase-cleaved cytokeratin-18 released from
apoptotic cells and intact cytokeratin-18 released from cells
dying from other causes, including necrosis, has also been
proposed as a marker to determine qualitatively and
quantitatively the extent of both types of cell death,%® but
should again be taken with caution.®®

Because of the absence of positive discriminative markers,
people use combined immunohistochemical methods and
electron microscopy to show the presence of necrotic dying
cells. Typically, hematoxylin and eosin (H&E) stained tissues
are analyzed for the presence of intact extracellular nuclei
remaining from necrotic dying cells (apoptotic nuclei are
condensed and fragmented) and infiltrating immune
cells.'®17:25:37.39 Often, these H&E stainings are supplemen-
ted with electron microscopic pictures to illustrate the
morphological characteristics of necrotically dying cells.3%¢°

Cell Death and Differentiation
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Table 1 Overview of different classes of necrotic stimuli and the regulatory mechanisms implicated

Trigger

Regulatory mechanism

Reference

Ligand/cytokine-induced necrosis
TNF

FasL

TRAIL

EDAR
LTS
TWEAK

Pathogen-induced necrosis
HIV-1
HSV-1
WNV
A%

MCMV
Neisseria gonorrheae
Porphyromonas gingivalis
Klebsiella pneumoniae
Shigella flexneri
Mycobacterium tuberculosis
Toxoplasma Gondii
Bordetella bronchiseptica
PAMP-mediated necrosis
Poly(l:C)

LPS
Unmethylated CpG

RIPK1-RIPK3-dependent

TNFR2 stimulation promotes TNFR1 signaling
Negatively regulated by FADD, caspase-8 and cFLIP_
CypD-dependent

Requires caspase inhibition

Requires FADD

RIPK1-RIPK3-dependent

Requires caspase inhibition

Requires FADD

RIPK1-RIPK3-dependent

?

ASK1-dependent

Requires caspase inhibition

Promotes TNFR1 signaling

RIPK1-independent

Inhibited by Nec-1 treatment

WNV:-E protein inhibits RIPK1 ubiquitylation

Sensitizes TNF-induced necroptosis
RIPK1-RIPK3-dependent

M45 protein protects from TNF-induced necroptosis
M45-deficient MCMV strain induces RIPK3-dependent necroptosis
ASC/NLRP3-dependent

HMGBH1 release

ASC/NLRP3-dependent

HMGBH1 release

ASC/NLRP3-dependent

HMGBH1 release

Myeloid cells: ASC/NLRP3-dependent; HMGB1 release
Non-myeloid cells: ASC/NLRP3-independent; negatively
regulated by Nod1 and RIPK2; CypD —dependent
NLRP3-dependent

?

?

RIPK1-dependent

RIPK1-RIPK3-dependent
?

Physico-chemical stress induced necrosis

H202

Ischemia-reperfusion

Calcium overload
Glutamate/NMDA

MNNG

Photodynamic therapy
lonizing irradation
Etoposide

IAP antagonists

Role of RIPK1 is controversial
RIPK3-independent
PARP1-dependent
Dependent on intralysosomal iron
CypD-dependent
PARP1-dependent

Inhibited by Nec-1 treatment
CypD-dependent
CypD-dependent
PARP1-dependent

Inhibited by Nec-1 treatment
CypD-dependent
PARP1-dependent

?

Increased RIPK1 levels

IAP and cFLIP depletion
Induces ripoptosome assembly
IAP depletion

Induces ripoptosome assembly

13,16-18,36,37,68

13,14,17,34,35,64,65

13,7,67

70
72,73
78-80

83,84,87
85
86,88
16,68,89
44,90
94

95

9
93,102
98-101

103
104,105

24,34,111
18,113
114

16,22,37,140,144-147

14,45,46,141-143,147,148

147,148
140,146,151-153

140,157
160-163
165,166
50

49

Abbreviations: EDAR, ectodermal dysplasia receptor; H,O,, hydrogen peroxide; HSV-1, herpes simplex virus type-1; LPS, lipopolysaccharide; LTf, lymphotoxin-f;
MCMV, murine cytomegalovirus; MNNG, N-methyl-N-nitro-N-nitrosoguanidine; NMDA, N-methyl-D-aspartate; TNF, tumor necrosis factor; TRAIL, TNF-related
apoptosis-inducing ligand; TWEAK, TNF-like weak inducer of apoptosis; VV, vaccinia virus; WNV, West Nile virus.
Different triggers can initiate necrotic cell death regulated by distinct mechanisms. Note that these triggers can also induce other types of cell death such as apoptosis
or pyroptosis depending on the cellular context and conditions

In addition, Tdt-mediated dUTP nick end labeling (TUNEL)
and anti-active caspase-3 staining are often used to deter-
mine the type of cell death.253%42 Typically, cells that stain
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positive for TUNEL but negative for active caspase-3 are
considered as necrotic cells. To investigate whether cells are
dying by necroptosis in vivo, RIPK1 and RIPK3 expression



Many stimuli lead to necrosis
N Vanlangenakker et a/

= TNF- TNF b

<J Pt TLRs
i Plasma membrane ;
]

TNFR2 X TNFR1

Complex Il
TRADD?

FADD

Caspase -8

zVADfmk

RIPK1*/3* (—\ o
Other TNFR Nec-1
superfamily \_/// \l/ J,
members ? /'—'————‘—'————'——
s € Necrotic conditioning & execution mechanisms
( JINK SMases Ca?* mitochondria ‘
ferritin \If ceramide cPLA calpain izl e ]
+ ZVAD-fmk? | v alterations + ZVAD-fmk?
1
labile I
C Ripoptosome A | ronpoo | d
\l, II Other
FADD lipid ATP NLRs?
Caspase-8 Nec-1 | ROS — peroxidation E LMP  epletion
RIPK1* \ N 7 v \ ;{ ) FPKo
~ Loss of organelle and cell integrity /

— — —— — — — — f— o Nod1

Oxidative
[Ca2+] stress

overload

k Excitotoxins

k RIG-
RIP1 ASC Icomplex ?
NLRP3

IAP antagonists —> pyroptosis

Etoposide Caspase—1

MNNG

Physico-chemical stress NLRs

Figure 2 Overview of different necrotic triggers and regulatory mechanisms. Necrosis can be elicited by a wide range of stimuli. (a) Necroptosis induced by DR (TNFR1,
TRAIL-R or Fas) stimulation depends on the kinase activity of RIPK1* and RIPK3*. RIPK1 and RIPK3 are present with FADD, caspase-8, and possibly TRADD in TNFR1
complex II, which can induce apoptosis or necroptosis. The latter depends on the functional assembly of a RIPK1*/RIPK3* necrosome complex, which is inhibited by Nec-1. (b)
TLR3 and TLR4 triggering induce necroptosis through RIPK1* and RIPK3*-mediated signaling (see text). (¢) Physico-chemical stress-mediated necrotic cell death. Oxidative
stress-, excitotoxin- or MNNG-induced necrosis require PARP1 activation. IAP depletion by etoposide or IAP antagonist treatment induces the spontaneous RIPK1-mediated
assembly of the ripoptosome. (d) NLR stimulation can induce necrosis depending on the cellular context. Microbial infection of cells with S. flexneri, K. pneumoniae and
N. gonorrheae triggers NLRP3/ASC-dependent necrosis in myeloid cells. In non-myeloid cells, S. flexneri-induced necrosis does not require NLRP3 or ASC and is negatively
regulated by Nod1 and RIPK2. Whether the executioner mechanism of NLR-mediated necrosis is similar to necroptosis requires further research. (e) Upon initiation of
necrosis, several factors become involved in the conditioning and execution of necrotic cell death. Important mediators are: the activities of cytosolic phospholipase A, (CPLA,),
lipoxygenase (LOX) and sphingomyelinase (SMase), which contribute to an increased reactive oxygen species (ROS) production and lipid peroxidation that damages cellular
membranes, calcium-mediated calpain activation that results in lysosomal membrane permeabilization (LMP), activation of JUN N-terminal kinase (JNK) that triggers the
degradation of ferritin thereby increasing the labile iron pool and consequently ROS generation and LMP, and alteration of the mitochondrial energy metabolism, which causes
an enhanced ROS production and ATP depletion. zVAD-fmk®: in certain cellular conditions, the induction of necrosis requires caspase inhibition (see text for more details)
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levels are measured in tissues via western blot analysis or
immunhistochemistry,'”373® sometimes combined with a
colocalisation study of RIPK1 and RIPK3.%2 Another indica-
tion for necroptosis in vivo is the detection of RIPK1 and
RIPK3 protein'® or complex activity*® after the isolation of
protein complexes from tissue extracts. Moreover, necropto-
sis is suggested when the amount of necrotic lesions in
tissues suspected upon treatment with Nec-1%° or genetic
deletion of RIPK3."®72% T determine different types of cell
death in vitro, we refer the reader to detailed reports.®%2 In
summary, necrotic cell death in vitro or in vivo cannot be

determined using a single method and preferably should be
identified by a combination of different methods.

Ligand/Cytokine-induced Necrosis

The TNF receptor (TNFR) superfamily consists of different
members that can be roughly divided in two groups,
dependent on the presence or absence of a cytosolic death
domain. Necroptosis triggered by death receptor (DR) TNFR1
relies on the activity of two serine-threonine kinases, RIPK1 13
and RIPK3.16718:3644 |n certain cell types, TNF-induced

Cell Death and Differentiation
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necroptosis can occur in the absence of caspase inhibitors, %
whereas necroptosis upon stimulation of the DRs Fas'364%
and TNF-related apoptosis-inducing ligand receptor 1 and -2
(TRAIL-R1/2 or DR4/5)'*%® requires the inhibition of cas-
pases or the absence of the caspase-8-activating adaptor,
FADD.'® Similar to TNF-induced necroptosis, Fas ligand
(FasL)'31417:3435 ¢ TRAIL'®'7®7 jnitiate necroptosis
(Figure 2a). Unlike the requirement for FADD in necroptosis
triggered by FasL or TRAIL stimulation,'® necroptotic cell
death initiated by TNF is negatively regulated by the presence
of FADD, 38 probably by favoring an apoptotic pathway and
suppressing the necroptotic pathway.®” In contrast, FADD-
deficient mouse embryonic fibroblasts (MEF) are resistant to
TNF-induced necroptosis in the presence of cycloheximide
and caspase inhibitors,%® suggesting that mechanistic differ-
ences may exist between different cell types. CID has also
been observed upon overexpression of the DR ectodermal
dysplasia receptor (EDAR),”® but EDAR signaling does not
involve FADD or TNFR-associated death domain protein
(TRADD) recruitment.”®”" It remains to be defined if this form
of dying has necrotic features or is dependent on the kinase
activity of RIPK1 or RIPKS.

Necrosis can be induced by triggering the lymphotoxin-f
receptor (LTSR) in the absence of caspase inhibitors and
requires the kinase activity of apoptosis signal-regulating
kinase 1 (ASK1).7>7® Because RIPK1 has been suggested to
act upstream of ASK1,”* it is conceivable that LTf-induced
CID involves RIPK1. Stimulation of the death domain-lacking
receptors TNFR2 or TNF-like weak inducer of apoptosis
receptor TWEAKR activates the non-canonical NF-xB path-
way, thereby inducing endogenous TNF production, which
favors TNFR1-induced apoptosis.”®>"® Recently, it has been
reported that the autocrine TNF signaling during TWEAK
stimulation triggers apoptosis by promoting the assembly of a
RIPK1-FADD—caspase-8 complex.”® In caspase inhibitory
conditions, it has been observed that triggering of TNFR2%8 or
TWEAKR induces necrotic cell death.®® As TNFR2 and
TWEAKR lack a death domain, endogenously produced
TNF may stimulate TNFR1-mediated necroptosis, as has
been demonstrated recently for TWEAKR-mediated apopto-
sis.”® Finally, triggering of TNFR superfamily member CD40
induces cell cytotoxicity by upregulating the death ligands
FasL, TRAIL and TNF.”®®" Recently, RIPK1 was shown to be
required for CD40 ligand-induced apoptosis.®? Whether
necrotic cell death can occur upon CD40 triggering is currently
not known to the best of our knowledge.

Pathogen-induced Necrosis

Beside cytokines, necrosis can also be induced by multiple
viruses such as human immunodeficiency virus type-1
(HIV-1),838 herpes simplex virus type-1 (HSV-1),8° West
Nile virus (WNV),®® vaccinia virus (VV)'® and murine
cytomegalovirus (MCMV)** (Figure 3). Although RIPK1
deficiency does not protect HIV-1-infected T cells from
necrosis,®” cell viability upon HSV-1 infection is increased
when the infection is preceded by a treatment with the RIPK1
kinase inhibitor Nec-1.8% Although it is unclear if WNV-induced
necrosis is RIPK1-dependent, the WNV envelope protein has
been reported to inhibit the antiviral response by interfering
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M45-deficient MCMV strain  (MCMV*) induces RIPK1-independent, RIPK3-
dependent necroptosis. HSV-1 infection induces necroptosis, which can be blocked
by Nec-1 treatment

with dsRNA-induced RIPK1 polyubiquitylation and NF-xB
activation.®® VV infection sensitizes TNF-resistant cells to
TNF-induced cell death'®¢88° and this sensitization requires
the presence of RIPK1%® and RIPK3.'® Moreover, as in
TNF-induced necroptosis, VV infection induces the formation
of a pro-necrotic RIPK1-RIPK3 complex, probably due to the
endogenous production of TNF'® (Figure 3). As a conse-
quence, RIPK3-deficient mice do not suffer from VV infection-
induced necrosis and liver inflammation, but are unable to
control viral replication,'® suggesting that RIPK1- and RIPK3-
dependent necroptosis is important for the inflammatory
response against virus infections. In contrast to VV infection,
MCMV-infected cells are resistant to TNF-induced necroptotic
cell death**%° and this resistance is mediated by the RIP
homotypic interaction motif (RHIM) of MCMV’s M45 protein,
which allows M45 to interact with RIPK1 and RIPK3%°'
(Figure 3). Consequently, MCMV strains lacking the M45
protein or containing a RHIM-mutated M45 protein induce
necrosis that relies on RIPK3 but not on RIPK1 or endogenous
TNF production.**° As a result, viral replication of RHIM-
mutated M45 MCMV strains is restored in RIPK3-deficient
mice,** again suggesting that RIPK3-dependent necroptosis
is essential for antiviral host defense.

Depending on the cellular context, microbial pathogens can
trigger apoptosis, necrosis or caspase-1-dependent cell



death, also called pyroptosis.>*'® Here, we will focus on
necrotic cell death triggered by microbial infections; reviews
discussing pathogen-induced apoptosis and pyroptosis can
be found elsewhere.®? Infection of macrophages with Shigelia
flexneri®® Neisseria gonorrheae,® Porphyromonas gingiva-
1is®® or Klebsiella pneumoniae® or infection of the human
monocytic cell line NOMO-1 with Staphylococcus aureus®
induces regulated necrosis that is dependent on apoptosis-
associated speck-like protein containing a caspase-recruit-
ment domain (ASC) and NOD-like receptor (NLR) family pyrin
domain-containing protein 3 (NLRP3; Figure 2d), requires
cathepsin B, and is associated with HMGB1 release.
However, see our critical remarks above regarding the
specificity of this process. Apparently, this particular type of
bacterial infection related to cell death does not rely on the
catalytic activity of caspase-1.9% Therefore this form of cell
death has been named ‘pyronecrosis’.®® However, the
Nomenclature Committee on Cell Death 2012 advises
researchers not to use the term pyronecrosis because it still
lacks a truly functional definition.'® Interestingly, mice
deficient in NLRP3 or ASC exhibit reduced lung necrosis, an
attenuated inflammation and strongly reduced HMGB1 serum
levels as compared to wild-type mice, but have an increased
mortality upon pulmonary infection with K. pneumoniae.®®
This suggests that ASC/NLRP3-dependent necrosis is crucial
for inducing an appropriate innate immune response against
microbial infection. Recently, it has been demonstrated in
human monocytic THP-1 cells that ASC-mediated necrosis is
not affected by blocking RIPK1 kinase activity using Nec-1,%”
suggesting distinct regulatory mechanisms for ASC-depen-
dent necrosis. Remarkably, in the same study it was shown
that knockdown of caspase-1, but not the inhibition of the
catalytic activity of caspase-1, suppresses S. aureus-induced
ASC-mediated necrosis in NOMO-1 cells,®” suggesting that
caspase-1 might fulfill a platform function in ASC-mediated
necrosis. Necrotic cell death is also observed upon infection of
mouse®® or human macrophages®'°' with a virulent
Mycobacterium tuberculosis strain. Wong and Jacobs'®
have shown that M. tuberculosis-induced necrosis in THP-1
cells decreases upon targeting NLRP3 using pharmacological
inhibition or RNA interference but not upon inhibition of
caspase-1 activity, indicating that M. tuberculosis induces
necrosis and not pyroptosis in THP-1 cells. Although it has
been suggested that ASC/NLRP3-mediated necrosis de-
pends on cathepsin B activity,®®>9+9%7 it seems that
NLRP3-mediated necrosis can also occur in conditions of
cathepsin B inhibition.’®'°! In contrast to macrophages,
S. flexneri-induced necrosis in non-myeloid cells is distinct
because this type of necrosis is independent of ASC, NLRP3
or cathepsin B, and is negatively regulated by the NLR
nucleotide-binding oligomerization domain-containing protein
1 (Nod1) and RIPK2,'% suggesting that the regulatory
mechanism differs depending on the cell type (Figure 2d).
Other pathogens that trigger a necrotic response are the
parasite Toxoplasma Gondii,'®® the bacterium Bordetella
bronchiseptica'® 1% and the bacterial toxin nigericin from
Streptomyces hygroscopicus.'®® Whether necrotic cell death
induced by these different pathogens is controlled by
ASC, NLRP3 or a different mechanism requires further
investigation.
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PAMP- and DAMP-mediated Necrosis

The cell recognizes pathogens upon binding of the so-called
PAMPs to PRRs. In addition, there is increasing evidence
showing that these PRRs also sense endogenous danger
signals, known as DAMPs that are released by necrotic
cells.’” The PRR group consists of Toll-like receptors
(TLRs), NLRs, retinoic acid-inducible gene-I (RIG-I)-like
receptors (RLRs) and C-type lectin receptors. Depending on
the cellular context, PRR triggering can induce different types
of cell death. To date, TLR-mediated necrotic cell death has
been described in cells triggered by TLR3, -4 and -9.
Recognition of dsRNA or poly(l:C) (synthetic dsRNA analog)
by TLR3 and lipopolysaccharide (LPS) by TLR4 triggers the
recruitment of an adaptor called Toll-interleukin-1 receptor
domain-containing adaptor inducing interferon-g,%81%° which
interacts with both RIPK1 and RIPK3 via its RHIM domain,'"°
suggesting the possible involvement of RIPK1 and RIPKS in
TLRS- and TLR4-induced necrosis. Indeed, poly(l:C)-induced
necroptotic cell death in the presence of interferon-f is
inhibited in RIPK1-deficient cells'"" or when RIPK1 kinase
activity is blocked.?*3* Recently, it has been reported that
poly(I:C) stimulation in a steatohepatitis disease model
induces necrosis that is correlated with an increase in RIPK3
expression, indicating a possible role for RIPK3 in poly(l:C)-
induced regulated necrosis in vivo.''? Triggering TLR4 by
LPS prevents necrotic cell death of macrophages when either
RIPK1 or RIPK3 is absent by RNA interference-mediated
knockdown.'®"3 Together, these data suggest that TLR3
and TLR4 stimulation may induce RIPK1- and RIPKS3-
dependent necroptosis (Figure 2b).

CID has been observed in progenitor B-cells upon triggering
of TLR9 with unmethylated CpG.""* Whether TLR9-induced
necrosis, like TLR3- and TLR4-induced necroptosis,
involves RIPK1 or RIPK3 remains to be investigated. Viral
RNA is not only sensed by TLR3 but also by RLR members
RIG-1""® and melanoma differentiated-associated gene 5
(MDAS5).""® The antiviral interferon response is induced
by a mitochondria-associated RIG-I sensing and signaling
complex involving RIPK1, FADD and TRADD''"''® js
negatively regulated by caspase-8-mediated cleavage of
RIPK1.""® To date, necrosis has not been reported in this
RIG-I/MDA5 pathway, but this may depend on the cellular
context and the presence of RIPK3. In addition to TLR9,
exogenous DNA is also detected by the cytosolic sensor DNA-
dependent activator of interferon regulatory factor (DAI)."2°
Interestingly, DAl-induced NF-«xB activation is dependent on
the RHIM-mediated interaction with RIPK1 and RIPK3 and is
inhibited by MCMV’s M45 protein.'?"'22 Whether MCMV
inhibits RIPK3-dependent necroptosis and the antiviral
immune response by acting at the level of DAl is an interesting
speculation and subject for future research. Beside the NLRs
Nod1 and NLRP3, which are important for S. flexneri-induced
regulated necrosis in non-myeloid cells and macrophages,
respectively,®® %2 no other NLRs have been linked to necrotic
cell death.

Endogenous molecules such as uric acid,'®®* HMGB1,%2
RNA,?* DNA'2% and ATP'2® are released from necrotic cells
and are recognized by PRRs. For instance, TLR2 and TLR4
recognize HMGB1,"?” TLR3 senses RNA,'?*'2® TLR9 is
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activated by endogenous genomic'®® or mitochondrial
DNA,"®® absent in melanoma 2 also detects cytoplasmic
DNA,"3%"%2 and NLRP3 detects ATP,'?%'%2 uric acid'*'3
and endogenous DNA."3® Whereas PAMP detection by PRRs
is able to trigger necrosis, recognition of DAMPs by the same
PRRs results in a sterile inflammatory response®!:123:125:126 o
pyroptosis. 136137

Phyisco-Chemical Stress-induced Necrosis

Physico-chemical stressors such as IR, oxidative stress,
calcium overload, chemicals, DNA damage and irradiation
can trigger necrotic cell death (Figure 2c). The insufficient
blood flow to tissues results in a limited oxygen supply or
hypoxia. Reoxygenation upon reperfusion has been shown to
induce necrotic cell death mediated by oxidative stress.3813°
Oxidative stress-induced necrosis caused by exposing cells to
hydrogen peroxide (H»0,)'® and necrosis upon hypoxia-
reoxygenation'*' are dependent on poly(ADP-ribose) poly-
merase 1 (PARP1). Interestingly, Nec-1 treatment protects
against IR-injury in vivo.'#4846.142.143 |n contrast to the
requirement for RIPK1 in TNF-induced necroptosis,'® the
role of RIPK1 in H,O.-induced necrosis is controversial.
FADD-deficient MEF cells are apparently hypersensitive to
H>O»-induced necrosis whereas MEF cells lacking RIPK1
show resistance.'** In addition, the sensitivity of FADD-
deleted MEF cells to H,O, is reversed by RIPK1 deficiency or
Nec-1 treatment,®” suggesting a similar mechanism of FADD/
caspase-8-mediated control of necrosis sensitivity as ob-
served in vivo.®®37 However, we and others observed that
RIPK116:22:145.146  anq RIPK3'® are dispensable during
necrosis triggered by HyO,. A possible RIPK1/RIPKS-
independent mechanism involves the stability of lysosomes,
which are immediately permeabilized upon exposure to H,O,
by a mechanism involving free iron.?? Intralysosomal iron
chelation, but not cathepsin B inhibition, rescues cells from
H,O.-induced necrosis.?? Beside lysosomes, mitochondria
are also implicated in HyO»-induced necrosis. Cells lacking
cyclophilin D (CypD), a component of the mitochondrial
permeability transition pore, are resistant to necrosis triggered
by H.0,."""*8 In vivo, CypD deficiency strongly reduces
oxidative stress-mediated necrosis upon IR.'#714® |n addition
to H,O,, necrotic cell death initiated by TNF in the presence of
caspase inhibitors,'” calcium overload'”'*® and S. flexneri
infection'%? is inhibited by CypD loss, suggesting a common
mechanism. Notably, Nec-1 treatment fails to protect CypD-
deficient animals from IR-injury,'*® indicating that Nec-1 may
act at the level of the mitochondria. In addition to oxidative
stress, nitrosative stress (e.g. peroxynitrite) has recently been
reported to trigger necrosis and HMGB1 release.'*®

Stimulation with glutamate- or N-methyl-D-aspartate
(NMDA) increases intracellular calcium levels, thereby trig-
gering necrotic cell death, known as excitotoxicity. Similar to
oxidative stress-induced necrosis, this form of necrosis also
relies on PARP1 and CypD.'#%15":152 |n addition, studies
have shown that NMDA- and glutamate-induced necrosis are
inhibited by Nec-1 treatment, 4653 indicating a role for RIPK1
kinase activity in excitotoxicity.

Exposing cells to the chemical N-methyl-N-nitro- N-nitroso-
guanidine (MNNG) induces DNA damage and results in

Cell Death and Differentiation

necrosis.'®* Like TNF-(although controversial), glutamate- and
H,O»-induced necrosis,'#% %5158 MNNG-induced necrosis is
dependent on PARP1 activation leading to polyADP-ribosyla-
tion and NADH depletion.'*®'%” Whereas RIPK1 kinase activity
is essential for TNF-induced necroptosis,13 its role in MNNG-
induced necrosis is less clear. In contrast to RIPK1-deficient
MEFs that are resistant against MNNG-induced necrosis,'®®
hippocampal HT-22 cells treated with the RIPK1 kinase inhibitor
Nec-1 are not.'®' Besides MNNG as a DNA damaging agent,
genotoxic stress induced by etoposide treatment has recently
been shown to trigger necroptosis as well as apoptosis
depending on the cellular content.®® Etoposide causes the
depletion of clAPs, which results in the spontaneous assembly
of the ‘ripoptosome’, a cytosolic multiprotein death-inducing
complex containing RIPK1-, FADD-, caspase-8-containing
complex, independently of DR activation.®® Similarly, the
ripoptosome is spontaneously formed upon treatment with
IAP antagonists, which deplete clAP levels,*® suggesting that
IAP levels control the formation of the RIPK1/FADD/caspase-
8-containing death-inducing complex. Although the ‘sponta-
neous’ formation of the ripoptosome has been demonstrated
to occur independently of autocrine TNF,*9%° in other cell
types a similar complex formation upon genotoxic stress and
resulting in IAP depletion, has been shown to operate through
an autocrine loop of TNF.*8 The concept that different forms of
cellular stress may propagate the formation of the ripopto-
some complex is a very attractive one, indicating that beside
the apoptosome also other cytosolic death complexes may
sense cellular stress and translate it to apoptosis or
necroptosis.'®® Importantly, the assembly of the ripoptosome
and ripoptosome-mediated cell death depends on the kinase
activity of RIPK1.5° Although ripoptosome-induced necropto-
sis is RIPK3-dependent, RIPK3 could not be detected in the
ripoptosome,*®®® so whether the ripoptosome initiates
necroptosis directly or indirectly requires further research.

Finally, necrotic cell death can also be induced by
irradiation. For instance, photodynamic therapy (PDT), which
is the treatment of cells with a photosensitizer followed by
irradiation, triggers necrosis.'®*'¢" Indeed, it has been shown
that treatment with the photosensitizer hypericin in combina-
tion with UV irradiation induces necrotic cell death in colon
adenocarcinoma HT-29 cells'®? and melanosome-containing
cells."®® Recently, it was demonstrated that the presence or
absence of RIPK3 determines the cell death modality by
PDT."®* Moreover, ionizing irradiation (X-ray) combined with
hyperthermia has recently been shown to induce necrosis
associated with HMGB1 release.'®® Interestingly, necrotic cell
death induced in colon carcinoma cells upon hyperthermia
and radiotherapy has been associated with increased RIPK1
expression levels.'®®

Concluding Remarks and Future Perspectives

Today, increasing evidence demonstrates that regulated
necrosis is not anymore an isolated observation of a particular
cell line or in certain conditions, but is also present in vivo
during the development, homeostasis, immune response and
pathology. The knowledge on the signal transduction and
regulation of necrosis is one of the hot issues in cell death
research. Because of the absence of clear and distinctive



markers, it remains difficult to study necrotic cell death in vivo
and to understand its contribution to development, home-
ostasis and pathogenesis. The most distinctive biochemical
marker is the dependency on RIPK3 kinase activity, which
makes it possible to examine necrotic cell death by the use of
RIPK3 knockout mice.'®” The absence of any spontaneous
phenotypic change suggests that RIPK3 apparently is not
involved in embryonic development and homeostasis."®”
However, genetic deletion of RIPK3 rescues caspase-8-
deficient mice from embryonic lethality,®>*® demonstrating
that RIPK3-dependent necroptosis is suppressed by apopto-
tic regulatory mechanisms, a remarkable example of how
cellular processes tightly control each other and that there
may be a good physiological reason why the apoptotic
pathway blocks the necrotic pathway.

Several studies have demonstrated a role for RIPK3-
dependent necroptosis in T-cell homeostasis.®**® Further-
more, RIPK3-dependent necroptotic cell death is crucial to
control viral replication'®** whereas ASC/NLRP3-dependent
necrosis is important to elicit an antibacterial immune
response.®® Necrotic cell death has also been shown in
glutamate-induced excitotoxicity,'*®'5% which is linked to
neurological disorders such as Parkinson’s disease, Hunting-
ton’s disease and Alzheimer's dementia. IR-injury'”:148 and
glutamate-induced neurotoxicity rely on the mitochondrial
component CypD,'%2 making it an attractive pharmacological
target for clinical practice.

The in vivo results with Nec-1, which acts by blocking RIPK1
kinase activity,'*'® but has also other targets,*®'®® suggests
that RIPK1 targeting could be a promising strategy for future
therapy development against stroke, heart failure and neuro-
logical disorders because Nec-1 treatment has been shown to
reduce IR-injury'#45:46:142.143 54 to ameliorate the symptoms
of Huntington’s disease in vivo.'®® Interestingly, the protective
effect of Nec-1 on IR-injury is abrogated when CypD is
absent,’® suggesting that Nec-1 or RIPK1 kinase activity
might act at the level of or upstream of CypD. As discussed
above, certain conditions, such as ripoptosome formation in the
absence of IAPs*%%° also revealed a contribution of RIPK1
kinase activity to apoptosis, suggesting that the in vivo efficacy
of Nec-1 may rely on its ability to target both types of cell death.
Studying IR-injury and neurotoxicity in RIPK3-deficient or
conditional RIPK1 knockout mice will be required to identify
the precise role of RIPK1 targeting and necroptosis. Moreover,
also RIPKS targeting could be desirable in view of the existence
of RIPK1-independent but RIPK3-dependent necrotic cell
death processes. Indeed, although RIPK1 kinase activity has
been shown to be essential for the initiation of necroptosis, =17
RIPK1-independent RIPK3-dependent necroptosis can occur
upon overexpression of RIPK3 in RIPK1-deficient MEF cells, '8
upon infection with MCMV** or during TNF-induced necropto-
sis in RIPK1/caspase-8 double knockdown L929 cells.®® This
implies that in certain cellular conditions, the need for the
kinase activity of RIPK1 to activate RIPK3 and initiate
necroptosis could be bypassed. In this respect, efforts to
develop specific RIPK3 kinase inhibitors may be very
successful.

To conclude, necrosis can be induced by a plethora of
triggers and seemingly, depending on the necrotic stimulus,
different programs may be initiated eventually leading to a
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necrotic cell death phenotype (Figure 2 and Table 1). Although
the regulation of the initiation of necrosis by these stimuli differs,
it might still be possible that a common execution mechanism of
necrosis exists. Intriguingly, the same stimulus can elicit
apoptosis or necrosis, depending on the cellular context. This
suggests that during evolution the induction of necrotic cell
death has been advantageous for the organism. In this respect,
necrosis has been shown to be crucial to fight against viral and
bacterial infections, and maybe also against cancer. Undoubt-
edly, elucidating the underlying molecular mechanisms regulat-
ing necrosis initiated by these different stimuli will improve
therapy development and hopefully lead to the identification of
specific necrotic biomarkers. The research activities of Jurg
Tschopp have inspired many of us in necrotic cell death
research. He has been the first to propose the RIPK1 kinase
activity as an important initiator'® and to identify components of
complex | and Il in TNF signaling.’” His very instructive talks
and his structured way of conceptualizing signaling pathways
and molecular complexes in functional modules (e.g. inflamma-
some) that can regulate multiple cellular outcomes had a large
impact and boosted the research in the cell death and
inflammation field.
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