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1 SUPPLEMENT
Regularization for the GeneMANIA algorithm
We investigate the effect of four different forms of regularizations
on the GeneMANIA algorithm: a) ridge with uniform prior, b) ridge
with mean prior, c) LASSO [7] and d) elastic net [8]. Standard
ridge regression with regularization parameter α2 corresponds to
the maximum a posteriori (MAP) estimation using a zero-mean
Gaussian p(~µ) ∼ N(0, α−1

2 I) on the weights. We can also use a
non-zero mean GaussianN(~v, S) as the prior on the weights, where
~v, S are the prior mean and diagonal covariance matrix; in this
setting the network weights are encouraged to be close to a vector ~v.
In ridge with mean prior we set ~v to the average weights assigned by
unregularized linear regression in predicting a large number of GO
categories. In ridge with uniform, we set vd = 1 for all networks.

As shown in the main text, ridge with mean and uniform prior
perform better than LASSO and unregularized linear regression.
One explanation for this observation is regularization methods that
lead to many weights of zero are too selective and often identify
only a few relevant networks. Figure S1 shows the proportion of
categories for which different networks were assigned a positive
weight. As shown, with LASSO, a few selected networks are
assigned a non-zero weights in a large number of the GO categories.

Grouping GO categories for SW
SW simultaneously optimizes the network weights to a group of
GO categories. We have investigated four different methods for
grouping GO categories: Tree0, Tree1, Size, and Clust (see Figure
S2). In Tree0 we fit SW to all GO categories in the same GO
hierarchy (e.g. BP) with 3-300 annotations, in contrast, in Tree1 we
fit the weights to all GO categories in the same hierarchy that have
the same parent category which has 300 or less annotations (where
each category is considered an ancestor of itself). In Size, we group
GO categories based on their number of annotation and hierarchy;
for example, we fit one set of weights to all BP categories which
have 3-10 annotations. In Clust, we use hierarchical agglomerative
clustering (single linkage) with Pearson Correlation Coefficient
(PCC), of binary vectors which represent the gene annotated to
categories, as the similarity metric to cluster GO categories. We
investigate three different clusterings with increasing number of
clusters n = {3, 10, 20}. Note that we only consider GO categories
with 3-300 annotations; this is because GO categories with fewer
annotations have too few examples for training and larger GO
categories are too general. Once we compute the network weights

based on a group of categories, we construct one composite network
and use it to predict all categories in the given group.

We have compared the performance of composite networks
constructed by SW when using the above four groupings of GO
categories (see Figure S3). As shown, the various versions of SW
perform similarly, however, SW-Tree0 slightly out-performs the
rest. In addition, Figure S3 shows that as the grouping of GO
categories becomes more specific (for example with Tree1 and
Clust#n), the generalizability of SW decreases. In Tree1, each
group consists of the ancestor at 300-annotation level with all of
its descendants; within these group 10 of 1188 categories where
singletons (did not have any descendants or ancestors at 300-
annotation level) and 414 of 1188 categories where placed in a group
with 10 or more categories. If we remove these singleton categories
the performance of Tree1 is still lower than that of Tree0 (average
area under the ROC curve of 0.8067 for Tree1 compared to 0.8273
for Tree0).

Regularizing SW We have also investigated the performance of
regularized versions of SW. Figure S4 shows the performance
of SW-Tree0 with 1) ridge, 2) ridge with uniform prior (ridge-
uniform), and 3) ridge with mean prior (ridge-mean). For ridge,
we set the regularization parameter using cross-validation. As
shown, and expected, ridge-uniform degrades the performance. SW
with ridge performs slightly better (but not significant) than the
unregularized version.

Data sources for constructing networks
We constructed a large number of networks for yeast, fly, mouse,
human, and E. coli. For yeast, majority of our networks are
constructed from protein interactions (PPI) and genetic interactions
(GI) that we downloaded from the BIOGRID database [6]
(downloaded Nov. 2008). We note that we don’t include BioGRID
interactions that are derived from small scale experiments (those
studies that reported less than 1000 interaction), as such interactions
are often used to derive annotations. In addition, we have included
networks constructed from gene expression and protein localization
(see Table 1). For interaction based datasets, we have include both a
direct and a correlation based network. For genetic interaction data,
we have constructed networks for both positive and negative genetic
interaction when possible.

In particular, for yeast, we constructed 44 networks which
include interactions derived from gene expression, protein and
genetic interaction (downloaded from BIOGRD [6]), and protein
localization. For mouse, we construct 10 networks using the data
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Fig. S1. Figure shows the proportion of times that a given network was assigned a positive weights with LASSO, unregularized linear regression, and ridge
with mean prior.

provided by MouseFunc [4]1 (See Table 2). For human, we have
constructed 8 networks based on 7 data sources provided by HPRD
[5] (downloaded Sep. 2007), in addition we also included a co-
expression network derived from a tissue expression dataset (See
Table 1). For fly, we have constructed 38 networks; 32 of these
are constructed from expression data downloaded from GEO [1],
4 networks are constructed from protein interaction data, and 2
networks are constructed from domain composition data (see Table
5). For E.coli, we use 7 networks provided by [2] (see Table 3)
which include protein interaction, co-expression, co-inheritance,
and shared sequence features.

Constructing functional association networks
For network-based data (e.g. protein interaction), we use both a
direct interaction network and a correlation based network using the
PCC on the frequency-corrected data (as done in [3]).

Co-expression networks Before constructing co-expression networks
from the gene expression datasets we standardize each feature
(condition) by subtracting the mean and dividing by the standard
deviation. To construct co-expression networks we use Pearson
correlation coefficient (PCC) to measure similarities between gene
expression profiles. In particular, in the co-expression network
Wd, the link (edge) between gene i and i is set to their
pairwise correlation coefficient rij . We set to zero all negative
rij . Correlation networks tend to be dense; a gene may have
a positive PCC with a large number of other genes. However,
efficient classification requires that we sparsify the correlation-
derived networks. This is because the time and space complexity
of our algorithm grows with the number of non-zero elements in
the networks. In practice, we sparsified each network in yeast, fly,
and human by keeping the top S=100 interactions for each gene
and setting the rest to zero; for mouse we use S=50 interactions (as
the mouse networks cover more genes and thus tend to be denser).

1 available from http://hugheslab.med.utoronto.ca/supplementary-
data/mouseFunc I/

We note that previous studies have shown that sparsification of
functional association networks does not degrade accuracy of gene
function prediction [3]. For E. coli, we sparsify the co-expression
network using a z-score cutoff ≥ 2.58 (p=0.001) (as done in [2]).
We then normalized all our networks by: W̃d = D

−1/2
d WdD

−1/2
d

where Dd is the diagonal row sum matrix of Wd. After combining
the networks, we also normalize the composite network W ∗ by left
and right multiplying with (D∗)−1/2.

Predicting cellular component and molecular function
In addition to predicting BP categories, we also report the
performance in predicting cellular component (CC) and molecular
function (MF) categories. Figure S5 and S6 shows the performance
of SW, Uniform, and unregularized linear regression in predicting
CC and MF categories in yeast, mouse, human, fly, and E.
coli. Similar to our previous observations, this figure shows that
SW improves the performance in categories with small number
of annotations ([3-10]) and overall performance as these small
categories make up the majority of GO functions.
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Fig. S2. We define four different methods for grouping GO categories: (a) Tree0: all categories in the same hierarchy in GO, (b) Size: all categories in the
same GO hierarchy with the similar annotation level where we define 4 annotations levels: [3-10], [11-30], [31-100], and [101-300], (c) Tree1: all categories
in the same hierarchy with the same ancestor which has no more than 300 annotations (each term is considered an ancestor of itself), and (d) Clust#n: all
categories in the same hierarchy which are clustered together using hierarchical clustering with n clusters (we vary the number of clusters n = {3, 10, 20})
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Fig. S3. Performance of SW with four different groupings of GO categories in predicting BP gene function with 44 yeast netowrks. The performance is shown
in terms of AUC of ROC and precision at 10% recall using 3-fold CV.
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Fig. S4. Performance of SW with 1) ridge, 2) ridge with uniform and 3) ridge with mean prior. The performance is shown in terms of mean AUC of ROC and
precision at 10% recall in predicting 1,188 GO BP categories with 44 yeast networks.
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Fig. S5. Performance of SW, Uniform network combination, and unregularized linear regression in predicting CC (top row (a) through (e)) and MF (bottom
row (f) through (j) ) GO categories in yeast, fly, mouse, human, and E.coli. Performance is measured in terms of precision at 10% recall.
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Fig. S6. Performance of SW, Uniform network combination, and unregularized linear regression in predicting CC (top row (a) through (e)) and MF (bottom
row (f) through (j) ) GO categories in yeast, fly, mouse, human, and E.coli. Performance is measured in terms of area under the ROC curve (AUC of ROC)
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Table 1. Data sources used for constructing 44 networks for yeast.

PMID Publication Number of networks Network # in the main text
10657304 Roberts et al. Science 2000 1 4
10929718 Hughes et al. Cell 2000 1 7
11102521 Gasch et al. Mol Biol Cell. 2000 1 2
11805826 Gavin et al. Nature 2002 2 8,17
11805837 Ho et al. Nature 2002 2 9,18
14562095 Huh et al. Nature 2003 1 1
14718668 Giaever et al, PNAS, 2004 1 44
14764870 Tong et al. Science 2004. 2 26,35
16093310 Miller et al. PNAS 2005 2 10,19
16269340 Schuldiner et al. Cell 2005 (PS) 4 27,28,36,37
16319894 Ptacek et al. Sciene 2005 2 11,20
16429126 Gavin et al. Nature 2006 2 12,21
16487579 Pan et al. Cell 2006 (SL) 4 29,30,38,39
16554755 Krogan et al. Nature 2006 2 13,22
16880382 Chua et al. PNAS 2006 2 5,6
17200106 Collins et al. Mol Cell Proteomics 2007 2 14,23
17314980 Collins et al. Nature 2007 (PS) 4 31,32,40,41
17923092 McClellan Cell 2007 2 33,42
18467557 Tarassov et al. Sciene 2008 2 15,24
18676811 Lin et al. Gens Dev 2008 2 34,43
18719252 Yu et al. Science 2008 2 16,25
9843569 Spellman et al. Mol. Biol. Cell. 1998 1 3

Table 2. Data sources used for constructing 10 networks in Mouse

PMID Publication Number of networks
1558831 Zhang et al. Journal of Biology 2004 1
15075390 Su et al. PNAS 2004 1
SAGE Lib. Tag counts 1
OPHID Protein interactions 1
Pfam Domain composition 1
InterPro Domain composition 1
MGI Phenotype 1
bioMART Phylogenetic profile 1
Inparanoid Phylogenetic profile 1
OMIM Disease genes 1

Table 3. Data sources used for constructing 7 networks in E.coli

PMID Publication Type Number of networks
19402753 Hu et al. Plos Biol, 2009 Protein interaction 1
M3D database M3D database v4Build5 affy Co-expression 1
19402753 Hu et al. Plos Biol, 2009 Shared Operons 1
19402753 Hu et al. Plos Biol, 2009 Gene fusion 1
19402753 Hu et al. Plos Biol, 2009 (updated version) Co-inheritance 1
19402753 Hu et al. Plos Biol, 2009 Distance in chromosome 1 1
19402753 Hu et al. Plos Biol, 2009 Distance in chromosome features 2 1
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Table 4. Data sources used for constructing 8 networks in Human

Source Type Number of networks
HPRD domain composition 1
HPRD complexes 1
HPRD protein-dna/rna-interaction 1
HPRD post transcriptional modification 1
HPRD tissue expression 1
HPRD protein interaction 1
HPRD OMIM disease 1
PMID:15075390 tissue expressionn 1

Table 5. Data sources used for constructing 38 networks for fly.

Accession Source Number of networks
GDS2674 Gene Expression Omnibus 1
GDS2399 Gene Expression Omnibus 1
GDS2485 Gene Expression Omnibus 1
GDS516 Gene Expression Omnibus 1
GDS1937 Gene Expression Omnibus 1
GDS2675 Gene Expression Omnibus 1
GDS1842 Gene Expression Omnibus 1
GDS2504 Gene Expression Omnibus 1
GDS2272 Gene Expression Omnibus 1
GDS1526 Gene Expression Omnibus 1
GDS23 Gene Expression Omnibus 1
GDS444 Gene Expression Omnibus 1
GDS732 Gene Expression Omnibus 1
GDS443 Gene Expression Omnibus 1
GDS667 Gene Expression Omnibus 1
GDS664 Gene Expression Omnibus 1
GDS653 Gene Expression Omnibus 1
GDS1690 Gene Expression Omnibus 1
GDS2665 Gene Expression Omnibus 1
GDS2071 Gene Expression Omnibus 1
GDS2479 Gene Expression Omnibus 1
GDS1911 Gene Expression Omnibus 1
GDS1739 Gene Expression Omnibus 1
GDS2673 Gene Expression Omnibus 1
GDS1977 Gene Expression Omnibus 1
GDS1877 Gene Expression Omnibus 1
GDS1686 Gene Expression Omnibus 1
GDS2830 Gene Expression Omnibus 1
GDS2784 Gene Expression Omnibus 1
GDS2228 Gene Expression Omnibus 1
GDS1395 Gene Expression Omnibus 1
GDS602 Gene Expression Omnibus 1
PMID14605208 BIOGRID 2
PMID15575970 BIOGRID 2
Interpro domains Interpro 1
Pfam domains Pfam 1
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