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Abstract
Bayesian phylogenetic analyses often depend on Bayes factors (BFs) to determine the optimal way to partition the data. The
marginal likelihoods used to compute BFs, in turn, are most commonly estimated using the harmonic mean (HM) method,
which has been shown to be inaccurate. We describe a new more accurate method for estimating the marginal likelihood
of a model and compare it with the HM method on both simulated and empirical data. The new method generalizes our
previously described stepping-stone (SS) approach by making use of a reference distribution parameterized using samples
from the posterior distribution. This avoids one challenging aspect of the original SS method, namely the need to sample
from distributions that are close (in the Kullback–Leibler sense) to the prior. We specifically address the choice of partition
models and find that using the HMmethod can lead to a strong preference for an overpartitionedmodel. In contrast to the
HM method and the original SS method, we show using simulated data that the generalized SS method is strikingly more
precise (repeatable BF values of the same data and partitionmodel) and yields BF values that are much more reasonable than
those produced by the HMmethod. Comparisons of HM and generalized SS methods on an empirical data set demonstrate
that the generalized SS method tends to choose simpler partition schemes that are more in line with expectation based on
inferred patterns of molecular evolution. The generalized SS method shares with thermodynamic integration the need to
sample from a series of distributions in addition to the posterior. Such dedicated path-based Markov chain Monte Carlo
analyses appear to be a cost of estimatingmarginal likelihoods accurately.

Key words: phylogenetics, Bayes factor, marginal likelihood, harmonic mean method, stepping-stonemethod, partitioning.

Research
article

Introduction
Partitioned analyses are now routine for multi-gene data
sets in Bayesian phylogenetics (Nylander et al. 2004;
Brandley et al. 2005; Brown and Lemmon 2007; Clarke and
Middleton 2008; Brown et al. 2009; Liu et al. 2010). It is
widely known that different genes or different codon posi-
tions experience different selection pressures. By partition-
ing, a better fit of model to data can be achieved, and
the models used better reflect the molecular evolutionary
forces at work. However, more partitions or more complex
models mean more parameters are estimated, increasing
the variability of estimates given a fixed and finite amount of
data. The question is how to choose an economical partition
strategy for the data that allows the model to fit the data
well but discourages unnecessary partitions that contribute
little to goodness-of-fit.

The Bayes factor (BF) has been shown to be a useful
criterion for model selection in Bayesian inference:

BF01 =
f (y|M0)

f (y|M1)
.

The BF is the ratio of the marginal likelihood under one
model, f (y|M0), to themarginal likelihoodunder an alterna-
tivemodel, f (y|M1), for fixed data y. If the ratio is larger than
1.0, modelM0 is favored; if less than 1.0, modelM1 is favored.
The language of odds ratios is used in discussions of BFs: For
example, BF01 represents the BF for model M0 and against

modelM1. Themarginal likelihood ofmodelM is a weighted
average (expected value) of the likelihood, f (y|θ,M ), where
the weights are provided by the prior, π(θ|M ), andθ ∈ Θ
may be multidimensional and model specific:

f (y|M ) =
∫
Θ

f (y|θ,M )π(θ|M )dθ.

The marginal likelihood is thus a measure of the average
fit of model M to data y, which contrasts with the maxi-
mized likelihoodused by likelihood ratio tests (Wilks 1938),
the Akaike information criterion (Akaike 1974), and the
Bayesian information criterion (Schwarz 1978), all of which
make use of the fit of the model at its best-fitting point in
parameter spaceΘ.

The estimation of marginal likelihoods is a challenging
task because no closed-form expression exists formost phy-
logenetic applications. The solution has been to resort to
numerical approximation using Markov chain Monte Carlo
(MCMC), and many methods have been proposed, includ-
ing the harmonic mean (HM) method (Newton andRaftery
1994), bridge sampling (Meng and Wong 1996), path sam-
pling (Gelman andMeng1998), thermodynamic integration
(TI; Lartillot and Philippe 2006), reversible jump MCMC
(Huelsenbeck et al. 2004), and the stepping-stone (SS)
method (Xie et al. 2010). Among these, the HM of the like-
lihoods computed from samples taken from the Bayesian
posterior probability distribution is the most broadly used
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in Bayesian phylogenetics. The popularity of the HMestima-
tor is due to its easy calculation and the fact that currently
no other choice is provided bymost Bayesian phylogenetics
software. In contrast to its popularity in Bayesian phyloge-
netics, HM has been controversial in the statistics commu-
nity from the moment it was proposed due to the fact that
it is a biased estimator of the marginal likelihood (the esti-
mate is expected to be higher than the true value; Xie et al.
2010) andhas a large andunpredictable variance (which can
be infinite) (Neal 1994).

Recently, improved means of estimating marginal like-
lihoods have been introduced into Bayesian phylogenet-
ics. Lartillot and Philippe (2006) described TI and Xie et al.
(2010) introduced the SSmethod, both of which exceedHM
greatly in both accuracy and precision. The Savage–Dickey
ratio (Verdinelli and Wasserman 1995; Suchard et al. 2001)
and reversible jump MCMC (Huelsenbeck et al. 2004) can
also be used to accurately estimate the BF directly when
models are nested.

The primary question addressed in this paper is: “If the
marginal likelihoods of models were more accurately esti-
mated, would less-partitioned models be used in Bayesian
phylogenetic analyses?” This is an important question be-
cause large Bayesian analyses generally require longer run
times, which leads to small effective sample sizes if run
times are not adjusted to be proportional to the num-
ber of estimated parameters. Reducing the number of data
subsets should therefore yield higher effective sample sizes
for a given amount of computational effort. Unnecessar-
ily complex models also have more diffuse posterior dis-
tributions, so using less-partitioned models is expected to
increase confidence in the inferences made. Finally, parti-
tioned analyses can lead to bizarre parameter estimates. For
example, it is possible for second codon positions to ap-
pear to evolve faster than first or even third codon positions
(Marshall 2010), and the estimated proportion of invariable
sites can be as high as 0.96 even when all sites are variable
(Appendix 1). Such abnormalities do not appear to occur
with unpartitioned models. Although eliminating all parti-
tions is an extreme solution that may reduce performance
due to poor goodness-of-fit (Brown and Lemmon 2007), us-
ing a more accurate marginal likelihood estimator may fa-
vor a less-partitioned model that alleviates some of these
pathologies without reducing goodness-of-fit appreciably.

Another question addressed is: “Is it possible to further
improve the efficiency of SS (Xie et al. 2010) so that re-
sults of comparable accuracy can be obtained with less
computational effort?” Inspired by the geometric path ap-
proach taken in Lefebvre et al. (2010), we show that use
of a straightforward reference distribution substantially in-
creases the computational efficiency of SS.

Our interest in the relationship of HM to partitioning
was initially aroused by figure 6 of Brown and Lemmon
(2007), which plotted twice the natural logarithm of the BF
(estimated usingHM) for a partitionedmodel against an un-
partitioned model when the unpartitioned model was the
true model. In such cases, partitioning is unnecessary and
while 2log(BF) is not guaranteed to be less than zero in this

case, it is reasonable to expect few, if any, positive values. In
contrast to expectation, approximately 31% of Brown and
Lemmon’s 2log(BF) values were above 0, and more than
5% were above 10. This means that in nearly one third of
the simulated data sets analyzed, a clearly overpartitioned
model would have been chosen using HM-based BF com-
parisons.We decided to conduct a study similar to the one
represented in figure 6 of Brown and Lemmon (2007) to
evaluate the effect of marginal likelihood estimation accu-
racy on model choice. Our expectationwas that few, if any,
data sets simulated under an unpartitionedmodel would be
chosen by a BF for a partitionedmodel against the unparti-
tioned (true) model when marginal likelihoods of the two
models were estimated accurately.

Materials and Methods
SimulatedData
Simulations were similar to those described in Xie et al.
(2010). The number of taxa in each simulated data set was
decided by drawing from the set of integers from 4 to 20
uniformly (and inclusively), and the number of nucleotide
sites was an even number uniformly chosen from 100 to
5,000. For each simulated data set, a tree topology was
chosen at random from all possible labeled unrooted binary
tree topologies (i.e., the proportional-to-distinguishable
model), and internal branch lengths, external branch
lengths, base frequencies, and general time reversible (GTR)
exchangeabilities were drawn from Gamma(10,0.001),
Gamma(1,0.1), Dirichlet(100,100,100,100), and Dirichlet
(100,100,100,100,100,100) distributions, respectively. The
discrete gamma distribution (ten categories) was used to
impart among-site rate heterogeneity, with the gamma
shape parameter drawn from a Gamma(2,3) distribution.
The 200 data sets used for this example were thus indepen-
dently and identically distributed. Although, technically,
this generating model produced all data sets from a GTR
+ G distribution, the distributions of parameters were
chosen so that many simulation replicates come close to
various submodels of the GTR + G model. For example,
the Gamma(2,3) distribution used to choose the shape pa-
rameter for among-site rate heterogeneity produces values
greater than 5 (i.e., effective rate homogeneity) about 50%
of the time. Thus, about 50% of data sets could be fit nearly
as well by the GTR model as by the (true) GTR + G model.
Previously (Xie et al. 2010), we used this simulation scheme
to address choice of substitution models in the context
of unpartitioned analyses; here, our purpose is to instead
explore choice among different possible ways to partition
data.

Empirical Data
In addition to simulations, we also evaluated empirical
data that have been a focal point for discussions of
artifacts associated with partitioning in Bayesian analyses
(Marshall et al. 2006). This data set is available at TreeBase
(http://www.treebase.org/, study accession number S1679)
and comprises 32 taxa and 2,152 nucleotide sites. For our
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analyses, we omitted the tRNA gene, leaving data for four
protein-coding genes (COI, COII, ATPase8, and ATPase6),
and reducing the total number of sites to 2,090.

Generalized SS Method
We describe here amodification of the SSmethoddescribed
by Xie et al. (2010). The modified version is considerably
more efficient and does not require sampling from distri-
butions close to the prior (which can be problematic for
vague priors). This generalizedSS introduces a reference dis-
tribution, which in practice is a product of independent
probability densities parameterized using samples from the
posterior distribution. Although the original SS method
does not require samples from the posterior distribu-
tion, in practice, the posterior is explored as a means of
burning-in the chain and this modified version uses this
burn-in period to parameterize its reference distribution.
However, if samples from a previous extensiveMCMC anal-
ysis of the posterior are available, it is advisable to use this
previous sample to parameterize the reference distribution.
A reference distribution that approximates the posterior
closely requires less computational effort to accurately es-
timate the marginal likelihood. Remarkably, as we will later
show, if the reference distribution exactly equals the poste-
rior distribution, the marginal likelihood can be estimated
exactly (i.e., in this case, MCMC sampling error does not
affect the estimate).

Consider the unnormalized density function qβ , which
has normalizing constant cβ yielding the normalized
density pβ :

qβ = [f (y|θ,M )π(θ|M )]β[π0(θ|M )]1−β,
pβ = qβ/cβ ,

cβ =

∫
Θ

qβ dθ,

where y represents the data (e.g., nucleotide sequences), θ
is the vector of model parameters, M is the model under
consideration, f (y|θ,M ) is the likelihood function,π(θ|M )
the actual model prior, andπ0(θ|M ) is the reference distri-
bution. The density pβ is a form of power posterior that is
equivalent to the posterior distribution when β = 1 but
equivalent to the reference distribution when β = 0. This
differs from the original SS method (Xie et al. 2010), where
the actual prior distribution is sampled when β = 0. The
power posterior can be difficult to sample ifβ is near 0.0 and
the prior is diffuse (normally the case), so using a reference
distribution facilitates sampling from pβ regardless of the
value of β. The goal is to estimate the ratio c1.0/c0.0, which
is equivalent to the marginal likelihood because c0.0 = 1.0
if the reference distribution is proper (which is assumed
throughout). Similar to the original SSmethod, this ratio can
be expressed as a product of K ratios:

r =
c1.0
c0.0
=

K∏
k=1

cβk
cβk−1

,

where 0 = β0 < · · · < βk−1 < βk < · · · < βK = 1.
Each ratio cβk /cβk−1

is estimated by importance sampling,
using pβk−1

as the importance sampling density. Because
pβk−1

is only slightly different from pβk , it serves as an ex-
cellent importance distribution. One of the K ratios, rk , can
thus be expressed as follows:

rk =
cβk
cβk−1

=

∫
qβk (θ)dθ∫
qβk−1
(θ)dθ

=

∫ ( qβk (θ)

pβk−1
(θ)

)
pβk−1

(θ)dθ∫ ( qβk−1
(θ)

pβk−1
(θ)

)
pβk−1

(θ)dθ

=

∫ ( qβk (θ)

qβk−1
(θ)/cβk−1

)
pβk−1
(θ)dθ∫ ( qβk−1

(θ)

qβk−1
(θ)/cβk−1

)
pβk−1
(θ)dθ

=

∫ (
qβk (θ)

qβk−1
(θ)

)
pβk−1
(θ)dθ

=

∫ (
[f (y|θ,M )π(θ|M )]βk [π0(θ|M )]1−βk
[f (y|θ,M )π(θ|M )]βk−1[π0(θ|M )]1−βk−1

)

× pβk−1
(θ)dθ

= Epβk−1

[(
f (y|θ,M )π(θ|M )
π0(θ|M )

)βk−βk−1
]
. (1)

An estimator r̂k is constructed using samples θk−1,i (i =
1, 2, . . . , n) from pβk−1

:

r̂k =
1

n

n∑
i=1

[
f (y|θk−1,i ,M )π(θk−1,i |M )

π0(θk−1,i |M )
]βk−βk−1

.

Numerical stability can be improved by factoring out the
largest sampled term, ηk = max1�i�n{f (y|θk−1,i ,M )
π(θk−1,i |M )/π0(θk−1,i |M )}:

r̂k =
1

n
(ηk )

βk−βk−1

×
n∑

i=1

[
f (y|θk−1,i ,M )π(θk−1,i |M )

ηkπ0(θk−1,i |M )
]βk−βk−1

.

On the log scale,

log r̂k = (βk − βk−1) log ηk

+ log

{
1
n

n∑
i=1

[
f (y|θk−1,i ,M ) π(θk−1,i |M )

ηk π0(θk−1,i |M )
]βk−βk−1

}
.
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Finally, summing log r̂k over all K ratios yields the overall
estimator:

log r̂ =
K∑

k=1

log r̂k

=

K∑
k=1

[(βk − βk−1) log ηk ]

+
K∑

k=1

log

{
1

n

n∑
i=1

[
f (y|θk−1,i ,M ) π(θk−1,i |M )

ηkπ0(θk−1,i |M )
]βk−βk−1

}
.

(2)

This approach reduces to the original SS method if the
reference distribution is equal to the actual prior. How-
ever, the reference distribution would normally be cho-
sen to be closer (in the Kullback–Leibler sense) to the
posterior than the actual prior, resulting in importance dis-
tributions that better approximate the distribution in the
numerator of each ratio. In practice, samples from the pos-
terior distribution (βk = 1) are used to parameterize the
joint reference distribution π0(θ|M ). For each component
θ of the model (where a component could be an individ-
ual parameter or a block of correlated parameters, such as
base frequencies), the marginal posterior samplemean (μ̂θ)
and variance (σ̂2θ) are used to parameterize an independent
reference distribution for θ. For example, if θ represents the
gamma shapeparameter used formodeling among-site rate
heterogeneity, a Gamma(μ̂2θ/σ̂

2
θ ,σ̂

2
θ/μ̂θ) distribution would

be used as the reference distribution for θbecause themean
of a Gamma(a ,b ) distribution is ab and its variance is ab 2.
Relative base frequencies are assigned a Dirichlet(a ,c ,g ,t )
distribution. The means (μ̂A , μ̂C , μ̂G , and μ̂T ) and variances
(σ̂2A , σ̂

2
C , σ̂

2
G , and σ̂

2
T ) of the sampled base frequencies may

be used to parameterize the Dirichlet reference distribution
as follows (using least squares to estimatem , the sum of all
parameters),

m̂ =

∑
i∈{A ,C ,G ,T} μ̂

2
i (1− μ̂i )2∑

i∈{A ,C ,G ,T} σ̂
2
i μ̂i (1− μ̂i )

− 1,

a = m̂ μ̂A ,

c = m̂ μ̂C ,

g = m̂ μ̂G ,

t = m̂ μ̂T .

Similarly, a Dirichlet(a ,b ,c ,d ,e ,f ) reference distribution can
be constructed for the GTR exchangeability parameters us-
ing sample means (μ̂AC , μ̂AG , μ̂AT , μ̂CG , μ̂CT , and μ̂GT ) and
variances (σ̂2AC , σ̂

2
AG , σ̂

2
AT , σ̂

2
CG , σ̂

2
CT , and σ̂

2
GT ). The joint ref-

erence distribution is simply the product of these indepen-
dent reference distributions.

Different subsets of a partition scheme are often given
their own relative substitution rate. These subset relative
rates are known as rate multipliers in MrBayes (Ronquist

and Huelsenbeck 2003), where they are introduced using
the command prset ratepr = variable. Subset rel-
ative rates, by definition, havemean 1.0, which precludes the
use of a Dirichlet prior or reference distribution.We use in-
stead a transformed Dirichlet distribution (which we term
here a subset relative rate distribution) to accommodate
subset relative rates. Consider the case of a partition that
defines n subsets, with proportion pi of the total sites as-
signed to subset i . Let Y ∼ Dirichlet(c1, c2, . . . , cn) and
Y = {yi : yi = xi pi}. The variable X = {xi} has a sub-
set relative rate distribution with density function

fX (X) = p1p2 . . .pn−1

×
(
(x1p1)

c1−1(x2p2)c2−1 . . . (xnpn)cn−1
Γ(c1)Γ(c2)...Γ(cn )
Γ(
∑n

i=1 ci )

)
.

(3)

To parameterize a subset relative rates reference distri-
bution, we transform sampled relative rate vectors using
the subset proportions to form samples that are Dirich-
let distributed. The method described above for parame-
terizing a Dirichlet reference distribution is then used to
obtain c1, c2, . . . , cn for the subset relative rates reference
distribution.

SimulatedData Analysis
Each of the 200 simulated data sets was subjected to six
separate MCMC analyses for the purpose of estimating
marginal likelihoods: 1) an analysis of unpartitioned data in
which HM was used to estimate the marginal likelihood, 2)
an analysis in which data were partitioned into two equal-
sized subsets and HM was used to estimate the marginal
likelihood, 3) an analysis in which original SS was used to
estimate the marginal likelihood for the unpartitioneddata,
4) an analysis in which original SS was used to estimate the
marginal likelihood for the bipartitioneddata, 5) an analysis
in which generalized SS was used to estimate the marginal
likelihood for the unpartitioned data, and 6) an analysis in
which generalized SS was used to estimate themarginal like-
lihood for the bipartitioneddata. Separate analyses were re-
quired for HM, original SS, and generalized SS because both
SSmethods require specialMCMC analyses to beperformed
in which the target distribution varies from the posterior to
either the actual prior or the reference distribution over the
course of the run. HM analyses were allotted approximately
the same amount of computational effort as SS analyses. For
bipartitioned analyses, the first subset was always the first
n/2 sites and the second subset always the last n/2 sites in
a data set of size n .

The GTR + G model was used for all analyses, and the
tree topology was fixed to the true tree topology used to
generate the data. In the case of partitionedmodels, all pa-
rameters were unlinked except the branch lengths. Prior
distributions (π(θ|M )) were as follows: exponential(10)
for all branch lengths, Dirichlet(1,1,1,1) for base frequen-
cies, Dirichlet(1,1,1,1,1,1) for the GTR exchangeabilities, and
exponential(0.01) for the discrete gamma shape parameter.
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The subset relative rates were fixed to 1.0 for all subsets in
these analyses.

For HM analyses, 22,000 MCMC cycles were employed,
and all parameters were updated onceper cycle. A slice sam-
pler (Neal 2003) was used to update branch lengths and the
discrete gamma shape parameter. A Metropolis–Hastings
Dirichlet proposal (Metropolis et al. 1953; Hastings 1970)
was used to update base frequencies and GTR exchange-
abilities. The Markov chain was sampled every ten cycles,
providing 2,200 samples in which the first 200 samples were
discarded as burn-in.

For the generalized SS analyses, 2,000 MCMC cycles were
devoted to each of the 11 β-power posteriors (K = 10),
again sampling every ten cycles. The first step served the
dual purpose of serving as a burn-in period and providing
samples from the posterior distribution for parameterizing
the reference distribution. The 11 β values were equally
spaced along the path from 1.0 to 0.0 (using a reference dis-
tribution that approximates the posterior obviates the need
to place more sampling effort near β = 0).

For the original SS analyses, all the settingswere the same
as the generalized SS analyses except that: 1) the first step
served as a burn-in period but no reference distributionwas
parameterized and 2) the 11 β values were chosen accord-
ing to evenly spacedquantiles of the Beta(0.3,1) distribution,
placingmost values ofβnear 0 as recommendedbyXie et al.
(2010).

All analyses were repeated with a different pseudoran-
dom number generator seed so HM, original SS, and gen-
eralized SS could be compared on the basis of repeatability.

Empirical Data Analysis
Four partition schemes were compared: “None” (unparti-
tioned data, data from all four genes concatenated), “Gene”
(4 data subsets, each corresponding to a gene), “Codon”
(3 data subsets, each corresponding to a codon position),
and “Both” (12 data subsets, with each of the three codon
positions in each of the four genes given its own partition
subset). A GTR + G model was applied to each subset re-
gardless of the number of subsets (1, 3, 4, or 12) in the
partition model. Branch lengths were linked across subsets
and the tree topology was fixed at the maximum likelihood
topology found by heuristic (Tree-Bisection-Reconnection,
or TBR, branch swapping) search in PAUP* 4b10 (Swofford
2002) assuming the “None” partition model and the GTR
+ G substitutionmodel. Thus, the simplest model (“None”)
has 70 free parameters (2× 32 − 3 = 61 branch lengths, 5
GTR exchangeabilities,3 relative base frequencies, and 1 dis-
crete gamma shape parameter), whereas the most complex
model (“Both”) tested has 180 free parameters (2×32−3=
61 branch lengths, 5 × 12 = 60 GTR exchangeabilities,
3×12 = 36 relative base frequencies, 1×12 = 12 discrete
gamma shape parameters, and 12− 1 = 11 subset relative
rates). The marginal likelihood of each partitionmodel was
estimated using two methods: HM and generalized SS. The
software Phycas (Lewis et al. 2008) was used.

For HM analyses, a single Markov chain was allowed to
burn-in for 500 cycles, where one cycle involved updating

all parameters at least once (base frequencies, GTR ex-
changeabilities, and subset relative rates were updated ten
times per cycle). In addition, an update affecting all branch
lengths (tree rescaling)was attempted once per cycle. These
updates were effected either by slice sampling (branch
lengths and discrete gamma shape parameters; Neal 2003)
or Metropolis–Hastings proposals (base frequencies, GTR
exchangeabilities, subset relative rates, and tree rescaling;
Metropolis et al. 1953; Hastings 1970). Following the burn-
in period, the chain was allowed to run for 25,000 additional
cycles and was sampled once per cycle.

Generalized SS analyses were identical to HM analyses
with the exception that after 500 burn-in cycles, 1,000
MCMC cycles were devoted to each of the 25 β-power pos-
teriors (K = 24). The first step provided samples from the
posterior distribution for parameterizing the reference dis-
tribution. The 25 β values were equally spaced along the
path from1.0 to 0.0. The amount of computation was inten-
tionallymade identical for HM and the generalized SS anal-
yses so that comparisons of the performance of HM versus
the generalized SS would be fair.

Results
Simulations
The simulation experiment compared BF estimated using
the HM, original SS, and generalized SS methods. Two hun-
dred data sets of varying sizes (both number of taxa and
number of sites) were simulated using a GTR+Gmodel, but
the data sets varied in the parameter values used in the gen-
eratingmodel. The 200 points in the plots in figure 1 repre-
sent the quantity 2log(BF) calculated for each data set. Each
BF valuemeasures themarginal likelihood of the partitioned
model (two equal-sized subsets) divided by the marginal
likelihood of the unpartitioned model. Because the true
model was unpartitioned, the expectation is that 2log(BF)
would be negative for all data sets, indicating that the un-
partitioned model fits the data better on average than the
(arbitrarily and unnecessarily) partitioned model. For HM
analyses (fig. 1a), 43 (21.5%) points are greater than zero.
This result is qualitatively similar to that reported by Brown
and Lemmon (2007) in their figure 6, even though those au-
thors used a more complicated generating model. In con-
trast, only one 2log(BF) value was above zerowhenBF values
were estimated using the original and generalized SS meth-
ods (fig. 1b and c ), and the variance of generalized SS esti-
mates is clearly smaller than the variance of estimatesmade
using the original SS method. The single 2log(BF) greater
than zero was from one of the smallest data sets simulated
(only 130 sites and 4 taxa). Using both SS methods, increas-
ing the number of sites generally resulted in a stronger pref-
erence for the unpartitionedmodel, whereas no such trend
was evident for HM analyses.

We also investigated repeatability of HM, original SS, and
generalized SS by analyzing each of the 200 data sets twice
using different pseudorandom number seeds. Ideally, the
same estimate of 2log(BF) should result from independent
analyses. Plotting the 2log(BF) values obtained from seed 1
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FIG. 1. Plots relating the number of sites to twice the natural logarithm of the BF (2log(BF)) in favor of the partitioned model (with two equal-size
subsets) over the unpartitioned model for 200 data sets simulated under a diversity of unpartitioned GTR +Gmodels (see text for details). (a ) Left:
2log(BF) estimated using the HM method. (b ) Middle: 2log(BF) estimated using the original SS method. (c ) Right: 2log(BF) estimated using the
generalized SS method.

against the 2log(BF) values from seed 2 should therefore re-
sult in all values being very close to the 45◦ diagonal line in-
dicating perfect identity. It is clear that HM (fig. 2a) is far
less repeatable than the generalized SS (fig. 2c ). Principal
component analyses reveal that 99.9% of the variance is ex-
plainedby the first principal component for the generalized
SS estimates, whereas only 70.2% of the variance is explained
by the first principal component for HMestimates. The orig-
inal SS (fig. 2b ) is intermediate in repeatability.

Empirical Example
Although we have shown that HM behaves poorly when
used for choosing a partition model on the basis of simu-
lated data, it can be argued that our simulations present a
scenario (each site evolving under exactly the same model)
that is perhaps never found in the real world. Also, biolo-
gists use their experience in choosing a partitioning scheme
so that partition placement is not arbitrary, as it was in our
simulated data example. The value of the simulation exper-
iment lies in the fact that we know the true model and
can judge whether methods are behaving as they should
under ideal circumstances. The poor performance of the
HM method under such straightforward conditions does
not bode well for its use in much more complex real data
situations.

A natural question at this point might be: “Does using
generalized SS instead of HM make any difference in ac-

tual practice?” To answer this question, we reanalyzed a
four-gene New Zealand Kikihia (cicada) data set used by
Marshall et al. (2006) to illustrate problems with branch
lengths that can arise in partitioned Bayesian analyses.
Table 1 and figure 3 show the results of applying both HM
and generalized SS to these data under four possible par-
tition models. Both HM and generalized SS agree that par-
titioning by codon is a good idea but disagree on whether
partitioningby gene is beneficial. Given the choice between
partitioning by gene (four subsets) and not partitioning
(one subset), HM prefers the partitioned model, whereas
generalized SS chooses the unpartitioned model. Likewise,
given the choice between partitioningby codon (3 subsets)
and partitioning by both gene and codon (12 subsets), HM
chooses to partition by both gene and codon, whereas gen-
eralized SS chooses the simpler model that partitions by
codon only.

Figure 3 also clearly shows the bias in HM: For each par-
titionmodel, the HM estimate of the marginal likelihood is
considerably greater than the generalized SS estimate. The
greater variability of HM estimates is also evident.

Discussion
Generalized SS Method
The SS method described here is an important generaliza-
tion of the original method described by Xie et al. (2010).

FIG. 2. Scatterplots showing twice the natural logarithm of the BF (2log(BF)) estimated using two independent analyses started with different
pseudorandom number seeds. (a ) Left: 2log(BF) estimated using the HM method. (b ) Middle: 2log(BF) estimated using the original SS method.
(c ) Right: 2log(BF) estimated using the generalized SS method.
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Table 1. Mean Log Marginal Likelihoods and Standard Deviations
Based on 20 Independent Replicates from Analysis of the Four-gene
New Zealand Cicada Data Set.

Partition Model HM Generalized SS

Unpartitioned −10246.78 (1.60) −10336.83 (0.19)
By gene −10215.31 (2.51) −10361.76 (0.78)
By codon −9692.18 (3.05) −9823.35 (0.82)
By gene and codon −9634.64 (3.52) −9875.39 (0.31)

When the reference distribution equals the actual prior, the
generalized method equals the original method; however,
choosing a reference distribution that approximates the
posterior rather than the prior results in amuchmore stable
and efficient estimator. It is more stable because the series
of power posterior distributions being explored are allmuch
more similar to one another, and sampling does not become
problematic when the power β is close to zero (if anything,
sampling becomes more straightforward at this end of the
path). Because it is a generalizationof the previous method,
we prefer to retain the name SS for the new method. To
avoid potential confusion, when the original SS method is
applied researchers should explicitly state that the reference
distribution equals the actual prior. Because of its improved
performance, the generalizedversion described here (where
the reference distribution approximates the posterior dis-
tribution) should be the default form of the SS method. To
see how the generalized SS method can be more efficient
than the original SS method, consider the case in which the
reference distribution exactly equals the posterior distribu-
tion. In this special case, the overall ratio r can be deter-

FIG. 3. Results of applying the HM and generalized SS methods to the
empirical New Zealand cicada data set for four different partitioning
schemes: unpartitioned (None), partitioned by gene (Gene, 4 subsets),
partitioned by codon (Codon, 3 subsets), and partitioned by both
gene and codon (Both, 12 subsets). Error bars represent standard de-
viations based on 20 independent replicates. The dotted line connects
mean log marginal likelihoods estimated using the HM method, and
the solid line connectsmean log marginal likelihoods estimated using
the generalized SS method.

mined exactlywith only a single sampled point! Substituting
π0(θ) = f (y|θ)π(θ)/f (y) into equation (2) and assuming
only n = 1 point was sampled for each value of k (and
assuming K = 1, if desired),

log r̂ =
K∑

k=1

(βk − βk−1)
{
log ηk

+ log

⎛
⎝ f (y|θk−1)π(θk−1)

f(y|θk−1)π(θk−1)

f(y)

⎞
⎠− log ηk

⎫⎬
⎭

= log f (y).

(Dependence on the model M suppressed for notational
clarity.) Although this result has no application in practice
(because the exact value of f (y) must be known in order
to compute the reference distribution density), it illustrates
the importance of choosing a reference distribution that is a
good approximation of the posterior distribution. If consid-
erable effort has already gone into approximating the pos-
terior, it behooves the investigator to use that information
in constructing the reference distribution.

Despite the efficiency and stability improvements, the
original SS still has a place in Bayesian model selection,
particularly in models involving latent variables. For ex-
ample, assume that each site is assigned a rate category
and the number and composition of these rate categories
is determined by a Dirichlet process (DP) prior (e.g., see
Huelsenbeck and Suchard 2007). The DP prior governs not
onlymodel parameters (the rates of rate categories) but also
latent variables (the assignments of each site to a rate cat-
egory), complicating the definition of the reference distri-
bution. In such cases, a hybrid SS approach is possible in
which all model parameters unrelated to the DP prior are
included in the parameterized reference distribution, with
elements such as the DP prior being given a reference distri-
bution equivalent to their actual prior.

BFs and Data Set Size
Intuitively, support for the true model over an overparame-
terized competingmodel will grow with the size of data sets
(more taxa and longer sequences), and in our simulation ex-
periment, this trend is easy to see when generalized SS is
used (fig. 1c ) but not when HM is used (fig. 1a) to estimate
marginal likelihoods. To support our intuition, we devised
the following example using normal distributions, which has
the advantage that results are exact (see Appendix 2 for
a detailed derivation). Suppose x1, . . . , xn are drawn from
a normal distribution with mean 0 and variance σ2. This
is analogous to simulating an unpartitioned nucleotide se-
quence data set from a given tree topology τ with a branch
length set υ and a known nucleotide substitution model.
These data may be analyzed using two models. Model M0

treats x1, . . . , xn/2 as if drawn from one normal distribution,
N (μ1, σ

2), and xn/2+1, . . . , xn as if drawn froma second, po-
tentiallydistinct normal distribution,N (μ2, σ

2). The means
of the two normal distributions are allowed to be different
but variance σ2 is shared, which is analogous to a Bayesian
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phylogenetic analysis in which one or more substitution
model parameters are estimated for each partition subset
but some (e.g., branch lengths and tree topology) are linked
across subsets. Model M1 treats x1, . . . , xn as if drawn from
a single normal distribution N (μ3,σ

2), which is the ana-
logue of an unpartitioned Bayesian phylogenetic analysis.
Both models assume that the variance σ2 is identical for all
n observations.

To obtain a closed-form expression, conjugate priors are
used for both mean μ and variance σ2, and the mean μ is
dependent on the variance σ2. That is, priors are

μ|σ2 ∼ N (0,σ2),

σ2 ∼ IG (a , b ).

After centering the observations
(
i.e.,
∑ n

2
i=1 xi = 0

and
∑n

j= n
2+1

xj = 0 for model M0, and
∑n

i=1 xi = 0

for modelM1

)
, the BF is

BF01 =
f (y|M0)

f (y|M1)
=

√
n + 1
n
2 + 1

, (4)

which demonstrates that BF01 is a monotonically decreas-
ing function of data size, hence, the unpartitionedmodel is
always the expectedwinner, even for data sets containing as
few as n = 2 observations. A plot of 2log(BF01) against n
(see supplementary fig. S1, SupplementaryMaterial online)
is similar to the trend in generalized SS-based 2log(BF) val-
ues for the simulated data (fig. 1c ).

Performance of Generalized SS on Simulated and
Empirical Data
Our simulation experiment demonstrated that use of the
HM method to compute BFs can potentially be very mis-
leading when using BFs to make decisions about which
partition model is best. In more than 1/5 of the data sets
analyzed, the HM method would lead one to choose a par-
titionedmodel when an unpartitionedmodel was the true
model. In contrast, the generalized SS method described
here would have recommended partitioning in only 1 of
the 200 data sets. Repeated independent analyses showed
that generalized SS is much more repeatable than the HM
method.

Our analysis of data on New Zealand Kikihia cicadas
illustrated that using HM can result in overpartitioning in
real data as well. The four genes used in this study are quite
similar in their pattern of substitution (see supplementary
table S1, Supplementary Material online). Based on the
tree length estimates, all the genes evolve at a rate within
35% of the average rate. Likewise, patterns of rate hetero-
geneity (shape parameter α), base frequencies (πi ), and
GTR exchangeabilities (rij ) (with the exception of the tran-
sition rates rAG and rCT ) are similar in magnitude across
genes. The similarity of parameter estimates across genes
makes it surprising that partitioning by gene would be
favored. It therefore makes sense that accurately esti-
mated marginal likelihoods do not support partitioning by
gene.

One drawback of SS is that it requires a special MCMC
analysis that explores a series of power posteriors. This ap-
pears to be a requirement for accurate direct estimates of
marginal likelihoods. The HM estimate, on the other hand,
can be obtained essentially for free because it requires only
samples already needed to approximate the posterior dis-
tribution. The extra cost of SS does not appear to be pro-
hibitive, however. If a sample from the posterior is available,
it can be used to parameterize the reference distribution
and provide good starting values for the power posterior
MCMC. Very few additional samples are required if a very
accurate reference distribution is available. Even if no pre-
vious posterior sample is available, the SS method requires
less computational effort than a HM estimate would re-
quire to deliver comparable accuracy. One slight advantage
of SS over HM is that the last step (β = 0.0) requires only
draws fromordinaryprobabilitydistributions and is thus rel-
atively much faster due to the fact that the likelihood need
not be computed for proposed values that are ultimately
rejected.

In this study, the topologywas fixedwhen estimating the
marginal likelihood using the SS method; however, there
is often interest in estimating marginal likelihoods that ac-
count for uncertainty in the topology. There is nothing to
prevent the estimation of marginal likelihoods using the
original SS method when the topology is allowed to vary
during anMCMC run, but varying the topology complicates
generalized SS because of the need to define a reference
distribution for topologies that provides a good approxi-
mation to the posterior. This important expansion of SS to
accommodate topological uncertainty is the subject of on-
going research in our group.

We have demonstrated that the SSmethod using a refer-
ence distribution that approximates the posterior is much
more accurate and repeatable for estimating marginal like-
lihoods than the currently popular HM method. We have
shown that using SS can result in the choice of a different
(and simpler) partition model than HMmethod for empir-
ical data. We therefore recommend that SS be used instead
of HM when using BFs to decide which partitioningscheme
is best. The SS method is implemented in the free, open
source software Phycas (Lewis et al. 2008).

Supplementary Material
Supplementary figure S1 and table S1 are available at
Molecular Biology and Evolution online (http://www.mbe
.oxfordjournals.org/).
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Appendix 1

Case in Which the Proportion of Invariable Sites
Exceeds the Proportion of Constant Sites
To demonstrate that invariable sites (I ) models can mis-
behave when data are partitioned, we used Seq-Gen 1.3.2
(Rambaut and Grassly 1997) to simulate a partitioned data
set in which 5,000 sites were assigned to subset 1 (the “large
slow” subset), and 100 sites were assigned to subset 2 (the
“small fast” subset). The sites in the small fast subset evolved
50 times faster than those in the large slow subset. The
tree model was the maximum likelihood tree (GTR + G
model) for the same 32-taxon cicada data set used as the
empirical example in this paper. The generating model was
Jukes–Cantor (JC) with no among-site rate heterogeneity
other than the difference in rate among subsets. We an-
alyzed this single simulated data set with Phycas using a
JC + I model for both subsets, with topology fixed to the
true tree and branch lengths linked across subsets but un-
linking the proportion of invariable sites parameter, pinvar.
Results are shown in the first row of table 2. Despite the
fact that all but one of the sites in the small fast subset were
variable, pinvar was estimated to be 0.96 for this subset. The
model thus considers 96% of the sites in this subset to be
incapable of varying when in reality 99% of them are, in fact,
indisputably variable. This serves to show that partitioning
can force otherwise well-behaved models to explain data
in biologically unreasonable ways. In this case, the branch
lengths are largelydeterminedby the large slow subset (note
the underestimated tree length), whichmakes it difficult for
the model to explain the fast-evolving sites in the small fast
subset. To explain these sites, the model finds that it can
increase the effective tree length for the second subset by
increasing the proportion of invariable sites parameter to
absurd levels. The invariable sites model is a mixture model
involving two relative rates that, by definition, have expec-
tation 1.0:

E [r ] = pinvarr0 + (1− pinvar)r1 = 1,

r1 =
1− pinvarr0
1 − pinvar

=
1

1− pinvar
.

The last step results from the fact that r0 = 0 (i.e., invariable
sites evolve, by definition, at zero rate). Bumping up pinvar
to 0.96 allows the model to effectively increase each branch
length by a factor of 27, which is very close to the estimated
relative rate (25) for this subset in a model (JC + M) that al-
lows subset relative rates to be free parameters (second row
of table 2). Note that using a model (JC + I +M, third row of
table 2) having both pinvar parameters for each subset as well
as subset relative rates behaves more sensibly than JC + I.
This is because the subset relative rates can account for the
difference in rate among subsets, allowing pinvar to go back
to measuring the proportion of invariable sites. This JC + I
+ M model is considered best by the HM method, yet still
rather seriously overestimatespinvar for the first partition. In
contrast, the generalized SSmethod described here shows a
slight preference for the (true) JC + Mmodel over the more
complex JC + I + Mmodel.

Appendix 2

Derivation of the BF in the Normal Example
Assume data x1, . . . , xn ∼ N (0,σ2) and analyze it with
two models, partitioned and unpartitioned. For the parti-
tioned model (M0), suppose x1, . . . , x n

2
∼ N (μ1, σ2) and

x n
2+1, . . . , xn ∼ N (μ2,σ

2), and set priors as:

μ1|σ2 ∼ N (0,σ2),

μ2|σ2 ∼ N (0,σ2),

σ2 ∼ IG (a , b ).

The joint prior is

π(μ1,μ2,σ
2) =

b aσ−2(a+2)

2πΓ (a)
exp

(
−μ

2
1 + μ

2
2 + 2b

2σ2

)
.

According to the definition of marginal likelihood,

f (x1, . . . , xn |M0) =

∫∫∫
f
(
x1, . . . , x n

2
|μ1,σ2

)
× f
(
x n

2+1
, . . . , xn |μ2,σ2

)
× π(μ1,μ2, σ2)dμ1 dμ2 dσ2

Table 2. Tree Length, Subset Relative Rates (m1 and m2), and Proportion of Invariable Sites Parameter Values (pinvar,1 and pinvar,2) for Two Subsets
(subscripts 1 and 2). In Total, 549 (11%) of the 5,000 Sites in Subset 1, and 99 (99%) of the 100 Sites in Subset 2 Were Variable.

Model HM Generalized SS Tree Length m1 m2 pinvar,1 pinvar,2
JC + I|JC + I −13788.91 −14025.85 0.15 1.00 1.00 0.27 0.96
JC + M|JC + M −13442.35 −13642.55 0.24 0.52 25.03 0.00 0.00
JC + I + M|JC + I + M −13433.07 −13646.04 0.24 0.52 24.90 0.22 0.01
True — — 0.22 0.51 25.50 0.00 0.00

NOTE.—I, invariable sites model; M, subset relative rates model; JC, Jukes–Cantor model.
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=

(
1√
2π

)n
1

n
2 + 1

b a

Γ (a)

Γ (α′′)
(β′′)α′′

,

where α′′ = n
2 + a and β′′ = 1

2

(∑n
i=1 x

2
i + 2b

)
− 1

n+2

[(∑ n
2
i=1 xi

)2
+
(∑n

j= n
2+1

xj
)2]

.

For the unpartitioned model (M1), suppose x1, . . . , xn ∼
N (μ3,σ

2) and set priors as follows:

μ3|σ2 ∼ N (0,σ2),

σ2 ∼ IG (a , b ).

The marginal likelihood is

f (x1, . . . , xn |M1)

=

∫∫
f (x1, . . . , xn |μ3,σ2)π(μ3|σ2)π(σ2)dμ3 dσ2

=

(
1√
2π

)n√
1

n + 1

b a

Γ (a)

Γ (α′)
(β′)α′

,

where α′ = n
2 + a and β′ = 1

2

(∑n
i=1 x

2
i + 2b

)
− 1

2(n+1)

[(∑n
i=1 xi

)2]
.

The BF in favor of the partitionedmodel is

BF01 =
f (x1, . . . , xn |M0)

f (x1, . . . , xn |M1)
=

√
n + 1
n
2
+ 1

×

⎧⎪⎨
⎪⎩

∑n
i=1 x

2
i +2b−

(∑n
i=1 xi
)2

n+1(∑n
i=1 x

2
i +2b

)− 2
n+2

[(∑ n
2
i=1 xi

)2
+
(∑n

j= n
2+1 xj

)2]

⎫⎪⎬
⎪⎭

a+ n
2

.

Assuming that the data are centered
(
i.e.,
∑ n

2
i=1 xi = 0,∑n

j= n
2+1

xj = 0, and
∑n

i=1 xi = 0
)
, the BF simplifies to

BF01 =
f (x1, . . . , xn |M0)

f (x1, . . . , xn |M1)
=

√
n + 1
n
2 + 1

.
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