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ABSTRACT
The formation of SCFA is the result of a complex interplay between diet and the gut microbiota
within the gut lumen environment. The discovery of receptors, across a range of cell and tissue
types for which short chain fatty acids SCFA appear to be the natural ligands, has led to increased
interest in SCFA as signaling molecules between the gut microbiota and the host. SCFA represent
the major carbon flux from the diet through the gut microbiota to the host and evidence is
emerging for a regulatory role of SCFA in local, intermediary and peripheral metabolism. However, a
lack of well-designed and controlled human studies has hampered our understanding of the
significance of SCFA in human metabolic health. This review aims to pull together recent findings
on the role of SCFA in human metabolism to highlight the multi-faceted role of SCFA on different
metabolic systems.
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Introduction

Short chain fatty acids (SCFA) are the primary end-
products of fermentation of non-digestible carbohy-
drates (NDC) that become available to the gut micro-
biota. They represent the major flow of carbon from
the diet, through the microbiome to the host. The dis-
covery that SCFA appear to be the natural ligands for
free fatty acid receptor 2 and 3 (FFAR 2/3), found on
a wide range of cell types, including enteroendocrine
and immune cells, has led to renewed interest in the
role of SCFA in human health.1-3 The link between
dietary intake, gut microbiota diversity and function
and their significance to human health is an active
area of research at the present time. This reflects: 1)
long-standing epidemiological evidence linking long-
term high-fiber diets to improved health outcomes, 2)
more recent observations from metagenomics studies
on variations in gut microbiome diversity in metabolic
disease and 3) improvements in our understanding of
the intricate molecular signaling (referred to as “cross-
talk”) between the gut microbiome and the host.
Together, these represent a new frontier in our under-
standing of the determinants of major diseases in
Western Societies. This is in part driven by the

potential to intervene over the life-course with rela-
tively simple and cost-effective interventions. How-
ever, at the present time, there is insufficient evidence
to inform appropriate, evidence-based clinical or pub-
lic health interventions with clearly defined outcomes
using SCFA formulations. This review aims to exam-
ine the recent evidence around the role of SCFA as
key signaling molecules between the gut microbiome
and host health and bring together an integrated view
of the role SCFA in human metabolic health.

SCFA production by the gut microbiota

SCFA are produced mainly through saccharolytic fer-
mentation of carbohydrates that escape digestion and
absorption in the small intestine and the pathways of
SCFA production are relatively well understood4 and
recently described in detail.5 The major products are
formate, acetate, propionate and butyrate. Lactate is
also a major organic acid produced from the fermen-
tation of selected, often rapidly fermentable NDCs.6

Relatively minor amounts of branched chain fatty
acids are also produced, mainly through fermentation
of protein-derived branched chain amino acids.7

Amino acid fermentation may also contribute to
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SCFA, mainly via acetate and propionate production.
Relatively little is known about the role of formate in
the gut. It has been linked to methanogenesis and
appears to be elevated in inflammatory conditions.8,9

Lactate can also be further metabolised to acetate, pro-
pionate and butyrate by a number of cross-feeding
organisms.10-12

Metagenomic approaches have facilitated charac-
terization of bacteria responsible for SCFA produc-
tion. Acetate production pathways are widely
distributed among bacterial groups whereas path-
ways for propionate, butyrate and lactate production
appear more highly conserved and substrate specific.
For example, propionate production although dis-
tributed across a number of phyla is dominated by
relatively few bacterial genera.13 Species such as
Akkermansia municiphilla have been identified as
key propionate producing mucin degrading organ-
isms.14 On the other hand, deoxy-sugars such as
fucose and rhamnose are particularly propiogenic
because of metabolic pathways present to reduce the
carbon skeleton, via the intermediate 1,2-propane-
diol, in select organisms.13 Fermentation of resistant
starch is thought to contribute significantly to buty-
rate production in the colon and is dominated by
Ruminococcus bromii, such that absence of the
organism significantly reduces resistant starch fer-
mentation.15 A surprisingly small number of organ-
isms, dominated by Faecalibacterium prausnitzii,
Eubacterium rectale, Eubacterium hallii and R. bro-
mii, appear to be responsible for the major fraction
of butyrate production.16 The link between diet,
microbiome composition and SCFA production,
although relatively well characterized is rather more
difficult to predict and has often relied on in vitro
fermentation data and animal models. In silico
modeling of the complex dynamic relationships
between dietary substrate, microbiota composition
and substrate production holds promise enabling
predictions of SCFA production from diet-gut
microbiome interactions.17 However, high-level evi-
dence from controlled human trials supporting
SCFA as key regulation factors in human metabo-
lism is largely lacking and there is significant reli-
ance on associative studies, rather than
interventional studies.

The field has been hampered by a lack of methodol-
ogy to measure SCFA production directly in human
studies, although recent work suggests that stable

isotope techniques may hold promise.18 Observations
in humans have largely relied on the measurement of
stool SCFA output, although it is unclear whether
stool SCFA output is a suitable proxy for luminal
SCFA production.19 However, there is emerging evi-
dence that diet-driven changes in microbiota diversity
lead to variations in SCFA. In a recent diet-switch
study, where African Americans were fed a high-fiber,
low-fat African-style diet and rural Africans a high-
fat, low-fiber western-style diet, the investigators
observed profound shifts in gut microbiota composi-
tion, and SCFA and bile acids in the faecal water.20 A
shift toward the butyrate producing organisms Rose-
buria intestinalis, Eubacterium rectale and Clostridium
symbiosum along with increased butyrogenesis was
observed on low-fat, high fiber feeding. Increases in
CD3C intra-epithelial lymphocytes and CD68C lamina
propria macrophages were also observed on high fat,
low fiber diets suggesting increased inflammation in
the absence of saccharolytic breakdown of fiber.
Whether these changes translate into long-term
impacts on host metabolism require intervention
studies of longer duration. Changes in the microbiota
of patients with inflammatory bowel disease (IBD)
have been linked with decreased bacterial diversity
and a loss of butyrate producing organisms such as F.
prausnitzii.21,22 A similar loss of diversity has been
observed in other auto-immune pathologies, such as
psioaritic arthritis, suggesting a role for the microbiota
and its metabolites in immune regulation.23 Insight
into the links between diversity and function are also
observed in interventions that have profound impacts
on the diet - gut microbiome axis. Roux-en Y (RYGB)
gastric bypass surgery led to enrichment of Bacteroi-
detes, Verrucomicrobia, and Proteobacteria at the
phylum level and relatively greater propionate and
lower acetate production suggesting that the gut
microbiota contribute to reduced host weight and adi-
posity after RYGB surgery.24 These studies highlight
the interdependence between diet (substrate), the gut
microbiota and host metabolism and that, changes in
SCFA and the microbiota are at least associated with
profound effects on host metabolism.

Site of SCFA production and biological gradient
from gut lumen to the periphery

It is important to consider the site of SCFA produc-
tion and the biological gradient across the various
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down-stream tissues to fully understand the biologi-
cal effects of SCFA in humans. This is particularly
pertinent for the translation of findings from animal
studies which often utilize oral SCFA supplementa-
tion or high dietary fiber supplementation to induce
changes in SCFA production. Oral SCFA are rapidly
absorbed and oxidised, best exemplified by the use
of sodium 13C-acetate as a tracer for liquid phase of
gastric emptying.25,26 High circulating concentra-
tions of SCFA (>1mmol/L; normal range, 0–
5 mmol/L for propionate and butyrate), other than
acetate, are observed in acidaemic disease in
humans and have profound impacts on metabolism
because of the toxicity of these organic acids at high
concentrations.27 Whether oral SCFA feeding stud-
ies that lead to high circulating SCFA concentration
in animals, particularly propionate, represent an
appropriate model for human SCFA physiology
requires further validation. Animal studies which
use dietary fiber supplementation to manipulate
colonic SCFA tend to use relatively high fiber sup-
plementation; 5 – 20% w/w NDC in animal dry
matter intake (DMI). Using the UK National Diet
and Nutrition Survey (NDNS), estimates of human
daily DMI (sum of protein, total fat, total carbohy-
drate, micronutrients and vitamins) can be
obtained.28 Mean daily DMI from the NDNS survey
in the UK for men and women (aged 19–64) is cal-
culated at 418.3 g/d and 326.3 g/d respectively.
Thus translating the fiber supplementation rates
from animal experiments, a daily fiber

supplementation in the range 20.9 – 83.7 g/d for
men and 16.3 – 65.3 g/d of dietary fiber would be
broadly comparable with the 5 – 20% w/w diet load-
ings used in animal studies. Also from UK NDNS
data, mean dietary fiber intake in the UK diet has
been measured at 14.7 g/d for men (aged 19–64)
and 12.8 g/d for women (aged 19–64) respectively
(measured as non-starch polysaccharide). Even the
lowest supplementation levels used in animal studies
represent a comparable substantial increase above
habitual dietary fiber intake in humans.

There is a strong biological gradient for each
SCFA from the gut lumen to the periphery which
leads to differing cell and tissue SCFA exposure
(Fig. 1). The seminal work in sudden-death victims
was first to highlight the significant reduction in
butyrate, relative to acetate and propionate across
the gut epithelium and also the significant reduction
in propionate relative to acetate across the liver in
humans.29 This has also been observed more
recently with stable isotope flux studies in man
where hepatic capacity to utilize SCFA balances gut
SCFA production, leading to non-significant
splanchnic propionate and butyrate output.30,31

These observations suggest that the roles of SCFA
should be considered in each cell or tissue type
within this biological gradient. The interplay
between epithelial utilization and integrity, splanch-
nic utilization and peripheral availability requires
delineation to determine whether increased produc-
tion of all SCFA, or selective increases in individual

Figure 1. The gut lumen is the major site of production but the concentration gradient falls from the lumen to the periphery with selec-
tive uptake of butyrate at the epithelium, propionate at the liver and acetate in the periphery. The significance for host physiology of
this biological gradient is poorly understood.
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SCFA at specific tissues, determines some of the
observed metabolic effects.

SCFA and gut integrity

It is well established that SCFA, and butyrate in partic-
ular, are important substrates for maintaining the
colonic epithelium. Butyrate is the preferred fuel uti-
lised by coloncytes and the primary site of butyrate
sequestration in the body is the gut epithelium.31,32

Butyrate appears to have a dual role, sometimes
referred to as the “butyrate paradox” whereby it indu-
ces proliferation in healthy colonocytes but terminal
differentiation and apoptosis in transformed cells.33,34

However, in a mouse model of colorectal cancer, buty-
rate appears to fuel hyper-proliferation in MSH2 defi-
cient colon epithelial cells leading to enhanced tumor
formation.35 SCFA also appear to play an important
role in regulating the integrity of the epithelial barrier
through co-ordinated regulation of tight junction pro-
teins (TJP) which themselves regulate the intracellular
molecular highway between the lumen and hepatic
portal system. Increased permeability is associated
with translocation of bacteria and/or their cell wall
components which trigger an inflammatory cascade
that has been associated with obesity and insulin resis-
tance.36 Increased bacterial lipopolysaccharide (LPS)
triggers a toll-like receptor 4 (TLR4) mediated pro-
inflammatory cascade in immune cells (monocytes,
macrophages and Kupffer cells), leading to the activa-
tion of downstream signaling pathways, such as
nuclear factor kappa b (NF-kB) and mitogen-activated
protein kinase (MAPK), which can lead to inflamma-
tion driven by cytokines such as TNF-a and IL-6.37 Of
the SCFA produced in the colon, butyrate appears to
be the most important regulator of TJP and has been
shown to enhance intestinal barrier function through
increased expression of claudin-1 and Zonula Occlu-
dens-1 (ZO-1) and occludin redistribution; proteins
which are critical components of the tight junction
assembly.38 Butyrate has been shown to reverse the
aberrant expression of ZO-1 and decrease LPS translo-
cation leading to inhibition of macrophage activation,
pro-inflammatory cytokine production and neutrophil
infiltration resulting in reduced hepatic liver injury in
rats.39 Further work is urgently needed in human
models to determine whether SCFA play an important
role in mucosal maintenance and integrity.

SCFA and glucose homeostasis

A potential regulatory role for SCFA in glucose
homeostasis, mediated through FFAR 2/3, has led to
significant interest in pharmacological interventions
targeting this receptor mediated pathway in metabolic
disease.40 In the liver, propionate is gluconeogenic
while acetate and butyrate are lipogenic.41 From stoi-
chiometric equations of daily SCFA production from
dietary fiber intake,42 daily propionate production,
estimated to be 29.5 mg/kg/day for an average 85 kg
human, is likely to make only a relatively small contri-
bution to endogenous glucose production (2.2 mg/kg/
min43) of which approximately 50% may be attribut-
able to gluconeogenesis.43 The potential role of SCFA
as signaling molecules regulating hepatic glucose
homeostasis however has not been fully elucidated in
humans. Acetate, propionate and butyrate appear to
regulate hepatic lipid and glucose homeostasis in an
adenosine monophosphate-activated protein kinase
dependent manner involving peroxisome proliferator-
activated receptor-g regulated effects on gluconeogen-
esis and lipogenesis.44 Recently, evidence has also
emerged for a homeostatic signal in the hepatic portal
system derived from increased intestinal gluconeogen-
esis from propionate which involves induction of glu-
coneogenic genes by butyrate.45,46 Given the
concomitant exposure of the epithelium to butyrate
and propionate, this mechanism suggests an elegant
homeostatic nutrient sensor. In addition, increased
propionate flux through the liver has been shown to
reduce intrahepatic triglyceride which is also likely to
elicit an improvement in hepatic and whole-body glu-
cose homeostasis.47 Furthermore, acetate has been
linked to suppression of adipocyte lipolysis, thus
reducing free fatty acid (FFA) flux to the liver mitigat-
ing against fatty liver induced deterioration in glucose
homeostasis.48,49 Finally, elevated plasma acetate has
been shown to be inversely related to plasma insulin
levels.50 A mechanism to explain this effect involves
improved insulin response in pancreatic b cells, medi-
ated by FFAR2 which induces improved glucose con-
trol.51,52 Taken together, the evidence suggests that
SCFA elicit effects on multiple tissues in a concerted
action to improve intestinal, hepatic and whole-body
glucose homeostasis.

In addition to the direct SCFA derived signal from
the gut there are concomitant signals, generated by
primary SCFA production in the gut lumen. Gut
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hormones produced by the enteroendocrine cells in
the colonic epithelium also exert beneficial effects on
glucose homeostasis. The mechanisms of gut hormone
driven effects on glucose homeostasis have been com-
prehensively reviewed elsewhere53,54 and are beyond
the scope of this review. However, the production of
SCFA by the microbiota in the gut lumen is an impor-
tant initiating event for the gut-hormone derived
signal.55,56

SCFA effects on lipid metabolism

SCFA elicit effects on lipid metabolism and adipose
tissue at several levels. In the liver, the fate of acetate is
de novo lipogenesis (DNL) and cholesterogenesis,
both of which appear to be inhibited by propio-
nate.57,58 Thus the ratio propionate : acetate may be
an important determinant of the contribution of
colonic acetate to lipid stores. Recent work has also
demonstrated that propionate alone is able to reduce
visceral fat and liver fat.47 Increased circulating SCFA
are associated with reduced adipocyte lipolysis and
adipogenesis.59 SCFA also inhibit insulin stimulated
lipid accumulation in adipocytes via FFAR 2 signaling,
resulting in small more responsive adipocytes which is
associated with reduced adipose inflammatory infil-
trate.60,61 Acetate also appears to stimulate leptin
secretion in adipocytes.62 Leptin is an important adi-
pose derived homeostatic signal which regulates
energy balance and appetite.63 The inhibition of adi-
pose tissue lipolysis leads to reduced free FFA from
the adipose tissue to the liver. In fatty liver disease,
adipose derived FFA have been shown to contribute
60% of fatty acids to newly synthesized triglyceride in
the liver while DNL contributes 26%.64 Rectal infusion
of acetate and propionate has demonstrated a 40%
reduction in serum FFA.49 The contribution of exoge-
nous (gut microbiota derived) acetate production to
whole-body acetate flux has been estimated to be
approximately 44%65 but how this proportional con-
tribution is affected by different NDCs and micro-
biome activity is largely unknown. Increasing
peripheral SCFA availability from NDC fermentation
may be a novel strategy to inducing regulation of FFA
flux in the obese phenotype. However, controversy
still exists regarding the role of SCFA in obesity. A
number of studies have advanced the “energy harvest-
ing” hypothesis, whereby SCFA are thought to con-
tribute additional calories through fermentation in the

obese as an explanation for additional weight gain.66

However, this is not supported by the observational
evidence in humans where high-fiber diets, which
would be expected to increase SCFA production, pro-
tect against weight gain.67-69 Further well controlled
studies in humans are urgently needed to dissect the
role of SCFA in lipid turnover and energy
homeostasis.

SCFA and appetite regulation

The role of SCFA in appetite regulation and energy
intake has recently been reviewed in detail else-
where.70,71 In addition to endocrine mediated effects,
SCFAs can modulate neuronal activity and visceral
reflexes directly via receptors expressed on neurons of
the peripheral, autonomic and somatic nervous sys-
tems providing an additional mechanism of SCFA
action.72 Whether these observations are driven by a
single SCFA or a synergistic combination of SCFAs
remains to be elucidated. In human intervention stud-
ies, only a small number of studies have demonstrated
that fermentable fiber is associated with improved
appetite regulation.73-77 Supplementation of habitual
fiber intake in the range 16 – 35 g/d (approximately 5
– 10 % DMI) is necessary to induce these effects and
may reflect the more consistent findings in animals at
these equivalent fiber loadings and above. Whether
these high fiber intakes elicit their appetite-regulating
effects via SCFAs and FFAR 2/3 signaling pathways
awaits a method to quantify SCFA production in vivo.
Tantalising evidence of the role of SCFA in appetite
regulation has recently appeared in a study using
selective modulation of colonic propionate in humans
which demonstrated that propionate appears to
induce short-term appetite regulation though PYY
and GLP-1 mediated mechanisms.47 Further work is
needed to fully elucidate the role of each SCFA
however.

SCFA and immune function

An exciting area of recent investigation has arisen
from the discovery that SCFA play a role in regulating
the immune system and inflammatory response. Early
work at the turn of this century had demonstrated the
potential role of butyrate in immune regulation when
it was shown that butyrate inhibits nuclear factor
kappa b (NF-kB) activation in macrophages and also
inhibits histone deacetylation (HDAc) in acute
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myeloid leukemia.78,79 NF-kB is a eukaryotic tran-
scription factor that is involved in the control of a
plethora of normal cellular processes, including
immune and inflammatory responses. HDAc inhibi-
tion plays a role in specific inflammatory signaling
pathways as well as epigenetic mechanisms.80

Recently, 2 studies have highlighted a potential role
for propionate and butyrate in regulatory T cell pro-
duction and function at the whole-animal level
through inhibition of HDAc.81,82 The extra-thymic
conditioning of regulatory T cell response by SCFA
suggests that these molecules are an important link in
the cross-talk between the microbiome and the
immune system. Whether SCFA act as a signal to
induce tolerance to the host-associated microbiome or
directly reduce inflammatory responses remains to be
fully elucidated. SCFA do appear able to reduce the
responsiveness of lamina propria macrophages to
commensal bacteria, via nitric oxide, IL-6, and IL-12
independent of FFAR signaling, to induce tolerance.83

SCFA, in particular propionate and butyrate, have

also been shown to inhibit the expression of lipopoly-
saccharide (LPS)-induced cytokines, IL-6 and IL-
12p40 in human mature dendritic cells.84 Of the few
clinical studies that have used SCFA therapeutically in
inflammatory disease in a controlled trial setting,
improvements in clinical and histological indices of
IBD and therapeutic efficacy in acute radiation procti-
tis have been observed supporting a direct anti-inflam-
matory role of butyrate at sites of inflammation.85,86

Decreases in butyrate-producing organisms have been
observed in metabolic aberrations such as type-2 dia-
betes,87 which is a disease characterized by low-grade
inflammation. Thus, an evolving body of evidence
appears to support a crucial role for SCFA in shaping
the local and peripheral immune system which
impacts on host metabolism via inflammatory
pathways.

The liver hosts a range of cell types that interact via
small molecules and secondary immune cytokine sig-
naling. Gut barrier permeability is thought to be a key
factor in determining the pro-inflammatory load

Figure 2. SCFA along with other metabolites entering the hepatic portal system are rapidly transported to the liver. The role of molecu-
lar signaling on different liver cell types is poorly characterized. SCFA can act on resident macrophages and hepatocytes although there
may be functional selectivity for each SCFA. Incretion hormones may also act on hepatocytes and peripheral tissues. The overall impact
of this dual signaling system appears to be maintenance of a healthy liver through regulation of hepatic metabolism and inflammation
and control of adipose derived FFA flux. The peripheral effects of SCFA appear tissue specific. SCFA can regulate insulin in the pancreas,
FFA flux from adipocytes, appetite centers in the brain and provide a fuel for the muscle. This multi-faceted role however, requires fur-
ther investigation with well-designed and controlled studies in humans.
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reaching the liver.36 Abrogation of hepatocyte triglyc-
eride accumulation and fatty acid esterification, and
decreasing fatty acid oxidation and insulin responsive-
ness has been observed in a murine Kupffer cell deple-
tion model, largely mediated by TNF-a.88 Recent data
also suggests butyrate suppresses TNF-a, IL-6, and
myeloperoxidase activity by preventing NF-kB activa-
tion in Kupffer cells.89 There is a paucity of data
regarding acetate and propionate, which would be
present at higher flux through the liver. Although fur-
ther evidence is required to establish the role of SCFA
in regulating liver inflammation, either directly or
indirectly, these studies demonstrate the importance
of the gut-liver axis in inflammatory and metabolic
systems and that SCFA may play important roles in
both.

The role of SCFA also extends to peripheral
immune function. A recent study has demonstrated
that acetate mediates joint inflammation in a murine
gout model through inflammasome assembly and IL-
1b production that is partially FFAR2 dependent.90 A
similar protective effect has been recently observed for
butyrate in a peripheral blood mononuclear cell gout
model, although high concentrations of butyrate were
required to moderate production of the pro-inflam-
matory cytokines IL-1b, IL-6, IL-8 and IL-1b.91 Con-
sideration of the biological gradient for SCFA
exposure for different immune cell types may be criti-
cal to defining physiologically relevant outcomes in
immune-mediated and inflammatory disease.

Conclusions and future perspectives

It is tempting to overlook the potential for small
ubiquitous microbiota derived molecules like SCFA
to act as important molecular signals between the
microbiota and host or as metabolic substrates regu-
lating host cellular metabolism. A continually
emerging body of evidence supports the role of
SCFA as key mediators of cell function in a range of
local, intermediary and peripheral tissues (summar-
ised in Fig. 2) raising the question as to whether
SCFA represent the key molecular link between diet,
the microbiome and health? The renewed interest in
SCFA, coupled with the revolution in the tools
available to dissect the complex molecular biology
associated with cell signaling and metabolism, is
beginning to provide evidence of the central role of
SCFA in the diet-gut microbiome-host metabolism

axis. There are however some key questions remain-
ing that require further investigation. 1) Is the
microbiome a passive substrate-degrading system or
are signaling molecules actively involved in micro-
biome-host “crosstalk”? Undoubtedly the answer to
this quandary is yes, the molecules produced
through microbiota activity provide important regu-
latory signals to the host and in the “-omics” revolu-
tion, metabolomics is a key enabling technology
which will enable the identification of the repertoire
of signals between microbiome and host. 2) Can the
microbiota and its function be manipulated in a pre-
dictable way to have a clinically relevant impact on
disease risk? The answer to this is highly likely to be
yes, but probiotic studies designed to change micro-
biota diversity have been far from convincing in
terms of outcome measures in metabolic health92

and weight management.93 Prebiotics have had
varying degrees of success and the lesson from ani-
mal feeding studies may be that high doses of NDC
are needed in Western populations to drive physio-
logically relevant changes in SCFA in order to
induce a physiologically relevant effect. This
presents a major challenge to translating effective
treatments into clinical practice or into strategies
that improve population health. New targeted
approaches may be needed. 3) In Western societies
and developing countries, what role do changes in
diet and microbiome function play in future risk of
disease? There is an increasing focus on the
prevention of diseases that cluster around obesity,
inactivity and a Western-type diet because of the
present and predicted future economic health bur-
den. The multifaceted roles of SCFA suggest that
they may play an important role over the life-course
in protecting the body against deteriorating meta-
bolic control and inflammatory status associated
with Western lifestyles. Whether manipulating the
diet-gut microbiome-host metabolism axis repre-
sents a panacea for prevention of these leading
causes of morbidity and mortality remains to be
seen but it is a tantalising prospect because of the
wide ranging benefits that could be brought about
through relatively simple and cost-effective inter-
ventions if they could be targeted appropriately.

Abbreviations
SCFA short chain fatty acids
NDC non-digestible carbohydrates
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FFAR free fatty acid receptor
IBD inflammatory bowel disease
DMI dry matter intake
UK NDNS United Kingdom national diet and nutri-

tion survey
TJP tight junction proteins
LPS lipopolysaccharide
TLR toll-like receptor
NF-kB nuclear factor kappa b
MAPK mitogen-activated protein kinase
TNF-a tissue necrosis factor-a
IL interleukin
ZO-1 Zonula Occludens-1
FFA free fatty acid
DNL de novo lipogenesis
HDAc histone deacetylation
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