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Introduction

Campylobacter jejuni is a small, Gram-negative, curved rod and 
is the most common cause of bacteria-mediated diarrheal dis-
ease globally.1 For the first time in 2005, campylobacteriosis 
exceeded salmonellosis as the most commonly reported zoonosis 
in the European Union, and the number of cases continues to 
increase.2,3 Campylobacteriosis is also the most common noti-
fiable disease in New Zealand and Australia.4,5 There is little 
human-to-human transmission, probably due to its microaero-
philic nature. Instead, it is primarily a zoonosis because it is a 
commensal of food animals, particularly poultry, which serves 
as the main reservoir for human infection.6 Meat becomes con-
taminated during the slaughtering process, and C. jejuni sur-
vives in the crevices of animal carcasses where oxygen tension is 
low.7 Although implementation of Hazard Analysis and Critical 
Control Points (HACCP) in the food industry in the mid 
1990s markedly reduced the rate of Campylobacter infections,8 
C. jejuni remains second only to Salmonella as the cause of food-
borne disease in the United States.9 However, other modes of 
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Campylobacter jejuni is a major cause of food-borne 
gastroenteritis worldwide. while mortality is low, morbidity 
imparted by post-infectious sequelae such as Guillain-Barré 
syndrome, reiter syndrome/reactive arthritis and irritable 
bowel syndrome is significant. in addition, the economic cost 
is high due to lost productivity. Food animals, particularly 
poultry, are the main reservoirs of C. jejuni. The over-use of 
antibiotics in the human population and in animal husbandry 
has led to an increase in antibiotic-resistant infections, 
particularly with fluoroquinolones. This is problematic because 
C. jejuni gastroenteritis is clinically indistinguishable from 
that caused by other bacterial pathogens, and such illnesses 
are usually treated empirically with fluoroquinolones. Since 
C. jejuni is naturally transformable, acquisition of additional 
genes imparting antibiotic resistance is likely. Therefore, 
an understanding of the antibiotic resistance mechanisms 
in C. jejuni is needed to provide proper therapy both to the 
veterinary and human populations.
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transmission, such as drinking contaminated water, are also 
important means of disease spread.10

The indiscriminate use of antibiotics in the human population 
as well as the use of antibiotics in animal husbandry, for treat-
ment, growth promotion and off-label uses, has led to an increase 
in antibiotic-resistant Campylobacter infections, particularly 
with regard to fluoroquinolones (FQ).9,11-16 There is evidence to 
support the hypothesis that resistance patterns in poultry may 
predict human resistance patterns; this has been most clearly 
shown with FQ.9,11-20 Although not all cases of Campylobacter 
infection require treatment,21 many cases of acute diarrhea are 
empirically treated with FQ, which likely further contributes to 
the emergence of FQ resistance.

The use of veterinary antibiotics varies greatly throughout the 
world. Of greatest concern are situations in which antibiotics can 
be used for growth-promotion purposes (as opposed to therapeu-
tic) because the low levels of antibiotics used in this setting and 
over long periods of time set the stage for the emergence of resis-
tant bacteria. In some areas including Indonesia, Thailand, India 
and parts of Africa, veterinary antibiotics can be obtained with-
out prescription or other controls.20,22 In contrast, the general use 
of antibiotics for growth promotion is banned in the European 
Union and Japan,23 and FQ cannot be used in food producing 
animals in Australia.

Although Campylobacter has an extensive formidable restric-
tion modification system that would tend to decrease the uptake 
of foreign genetic material, it is also naturally transformable, and 
the acquisition of resistance genes from other organisms has been 
described.24-35 For all these reasons, the study of the resistance 
mechanisms present in C. jejuni is important to both human and 
veterinary health.

The genetic elements that underlie these mechanisms may be 
chromosomal or plasmid-borne, and represent a combination of 
endogenous and acquired genes. In general, mechanisms of anti-
biotic resistance include (Table 1):

(1) Modification of the antibiotic’s target and/or its expression 
(i.e., DNA gyrase mutations)

(2) Inability of the antibiotic to reach its target (i.e., expression 
of the major outer membrane protein or MOMP)

(3) Efflux of the antibiotic (i.e., multidrug efflux pumps such 
as CmeABC)

(4) Modification or inactivation of the antibiotic (i.e., 
β-lactamase production).
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fluoroquinolones include the most commonly used antibiotics 
(i.e., ciprofloxacin) to treat acute bacterial diarrhea, although 
macrolides are the drug of choice if campylobacteriosis is strongly 
suspected.21 However, campylobacteriosis is clinically indistin-
guishable from other causes of bacterial diarrheal illness, and so 
without epidemiology suggestive of Campylobacter infection, 
many cases are treated empirically with FQ. As such, FQ resis-
tance is of great clinical concern.

Worldwide, FQ resistance was unusual in the late 1980s to 
early 1990s.12,13,55 However, the combination of indiscriminate 
use of FQ in humans and increased FQ use in the poultry indus-
try in particular, has contributed to an increase in the preva-
lence of FQ-resistance in both animals and humans.11,12,14 The 
surveillance of FQ susceptibility in Campylobacter in animals 
is important not only for purposes of food production, but also 
because the emergence of resistant strains in animals portends 
an increase in resistant human infections.11-14,56 Recognition of 
this connection has supported the limitation or outright ban-
ning of FQ for veterinary purposes in many countries includ-
ing the United States,57 Denmark, and Australia among other 
countries. Accordingly, FQ-resistance in > 150 Campylobacter 
isolates from broilers in Australia was reported to be between 
0–2.4%,58,59 which likely contributes to the similarly low-level of 
FQ-resistance (2%) in human isolates.59 Additionally, data from 
the Danish Integrated Antimicrobial Resistance Monitoring and 
Research Programme (DANMAP) show that C. jejuni isolates 
from domestic broilers was 11%, compared with 57% from 
imported broilers,55 and that while one-third of domestically-
acquired Campylobacter infections were FQ-resistant in 2011, 
84% of infections acquired abroad were FQ-resistant.55 Similarly, 
6.5% of human Campylobacter infections acquired in Norway 
were FQ-resistant, compared with 67% FQ-resistance in infec-
tions acquired abroad.60

However, the veterinary use of FQ varies widely throughout 
the world depending on the production setting (i.e., commer-
cial vs. family-owned) as well as on a country-wide basis.11,52,53,61 
For example, as in many countries, antibiotics are used both 

In Campylobacter, a recurring theme is synergy between anti-
biotic efflux and a second mechanism. The best-described multi-
drug efflux pump in Campylobacter is CmeABC, consisting 
of three components: an outer membrane protein (encoded by 
cmeC), an inner membrane drug transporter (encoded by cmeB), 
and a periplasmic protein (encoded by cmeA) that bridges CmeB 
and CmeC.36,37 This efflux pump also contributes to resistance 
to bile acids.38 Other putative efflux pumps including CmeDEF 
and CmeG, may also contribute to antibiotic resistance.39,40 
Sequencing reveals that C. jejuni has a total of 14 possible efflux 
pumps, but most have not been characterized functionally.41 In 
addition to intrinsic resistance mediated by efflux,36,37,39,40,42-44 
antibiotic exclusion [via the major outer membrane porin 
(MOMP),45 lipooligosaccharide and possibly capsule]46 also con-
tribute to intrinsic resistance. Campylobacter exhibits intrinsic 
resistance to novobiocin, bacitracin and vancomycin, polymyxin/
colistin, presumably due to the absence of appropriate targets 
and/or low affinity binding to targets.47-50 In the case of intrinsic 
resistance to trimethoprim,26,47,51-53 variant forms of dihydrofolate 
reductases (encoded by dfr1 most often but also by dfr9) that are 
not inhibited by trimethoprim are found in > 90% of C. jejuni 
that have been examined.26

Approximately 90% of Campylobacter infections in humans 
are caused by C. jejuni (C. coli accounts for ~9%),54 and the 
majority of the literature on human infection focuses on C. jejuni. 
Therefore, this review will focus on the antibiotic resistance 
mechanisms found in C. jejuni for commonly-used antibiotics.

Fluoroquinolone Resistance

Fluoroquinolones manifest concentration-dependent, bacte-
ricidal activity against a wide variety of both Gram-negative 
and Gram-positive organisms, are available in both oral and 
intravenous forms, are conveniently dosed once or twice daily 
usually, and are well-tolerated; all these attributes make this a 
heavily-used class of antibiotic in humans. Nalidixic acid is the 
parent, non-fluorinated compound of this antibiotic class. The 

Table 1. Antibiotic resistance mechanisms of Campylobacter

Antibiotic class Resistance mechanisms

Aminoglycoside
Modification of the antibiotic by aminoglycoside-modifying enzymes (AphA, Aade, Sat) 

Contribution of efflux is not clear

Beta-Lactam
enzymatic inactivation of the antibiotic by β-lactamase (penicillinase, OXA-61) 

Decreased membrane permeability of most anionic and Mw > 360 kDa antibiotics due to MOMP 
efflux through CmeABC and possibly others

Fluoroquinolone
Modification of the DNA gyrase target (Thr-86-ile; also Asp-90-Asn, Ala-70-Thr) 

efflux through CmeABC

Macrolide

Mutations in 23S rrNA 
Contribution of mutations in ribosomal proteins L4/L22 is likely minor 

efflux through CmeABC and possibly others 
Decreased membrane permeability due to MOMP

Tetracycline
Modification of the target ribosomal A site by TetO binding 

efflux through CmeABC and possibly others 
Contribution of decreased membrane permeability due to MOMP is not clear
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6–16 g/ml).89,90 While mutations in gyrB have been reported, 
they do not confer FQ resistance.78,80,91

It is somewhat surprising that the Thr-86-Ile mutation in 
gyrA seems to increase the fitness of Campylobacter in a chicken 
model,71 although this observation supported by the previously 
mentioned studies demonstrating that these resistant strains per-
sist even after FQ are withdrawn from poultry flocks for several 
years.67-69 Conflicting reports exist about whether this mutation 
translates into more severe infections in humans.92-97

Another mechanism of FQ-resistance that seems to work in 
concert with gyrA mutations is efflux via the chromosomally-
encoded CmeABC multidrug efflux pump, which reduces the 
intracellular concentration of FQ and several other antibiot-
ics.36,37 This efflux pump acts synergistically with DNA gyrase 
mutations to effect high-level FQ-resistance;72-74 for example, 
strains carrying DNA gyrase mutations that alone lead to 
intermediate-level FQ resistance manifest high-level resistance 
when CmeABC is also expressed.73,74 Also, CmeABC assists in 
the emergence of gyrA mutants that otherwise could not survive 
selection by even low dose FQ.74 Unlike efflux pump mechanisms 
in other Gram-negative bacteria which require overexpression 
to lead to clinically relevant resistance, the basal, constitutive 
expression of CmeABC is sufficient to mediate FQ resistance 
(although experimental overexpression does increase the level of 
FQ-resistance).74

An additional putative efflux pump, CmeG, has also recently 
been described as conferring both resistance to structurally unre-
lated antibiotics as well as oxidants.40 Insertional mutagenesis of 
cmeG led to a 4-fold reduction in ciprofloxacin resistance vs. the 
wild-type parent, and an 8- to 32-fold increase in resistance to 
ciprofloxacin and other FQ when cmeG was overexpressed.40

Interestingly, FQ-resistance has emerged on poultry farms 
even in the absence of FQ administration.64,98 Since the major 
mechanism of nalidixic acid and FQ-resistance in Campylobacter 
is via point mutations in gyrA, it is difficult to attribute this phe-
nomenon to co-inheritance of multi-resistance mobile elements. 
It has been suggested that other antibiotics could select for 
FQ-resistance in Campylobacter,98 but whether this occurs via 
expression of the CmeABC pump or other mechanism remains 
to be clarified.

Macrolide Resistance

Macrolide antibiotics and the closely-related ketolides are large 
molecules (MW > 700) that inhibit bacterial protein synthe-
sis. The macrolide antibiotic erythromycin is the treatment of 
choice for campylobacteriosis.21 Other members of this class of 
antibiotics include clarithromycin, azithromycin, telithromycin 
(technically a ketolide), tylosin and tilmicosin; the latter two 
are approved for veterinary use only (erythromycin also has a 
veterinary indication).99 Macrolides inhibit protein synthesis by 
binding reversibly to the P site on the 50S subunit of bacterial 
ribosomes. The main mechanisms of resistance to macrolides 
in Campylobacter are (1) target modification, (2) efflux and  
(3) altered membrane permeability. The first two mechanisms 
act synergistically to confer high-level macrolide resistance.100,101  

prophylactically and therapeutically in industrialized and com-
mercial free-range poultry farms in South Africa, but not in 
small-scale family farming. The rates of FQ resistance were 
highest in commercial free-range broilers, at > 95%, but were 
lower in industrial broiler (16%) and lowest in poultry from 
family farms (8%).62 Thailand also reports very high rates of 
FQ resistance in C. jejuni from broilers, upwards of 80%.13,52,63 
In Japan, the rate of nalidixic acid resistance in C. jejuni from 
broiler flocks was 55%, and for a veterinary FQ (enrofloxacin) 
the rate was 30%.64 The experience in Europe has been quite 
variable, ranging from very low FQ-resistance (1.2%) in broilers 
in Norway,60 intermediate in Belgium56 and Poland,65 (44% and 
56%, respectively), to alarmingly high in Spain, where it was 
reported in 2000 that 99% of Campylobacter isolates from broil-
ers were FQ-resistant.66

In the United States in 2004, the Federal Drug Administration 
reversed its prior approval for the therapeutic use of the veteri-
nary FQ enrofloxacin because of concerns that the rising level 
of FQ-resistant Campylobacter in poultry was being reflected 
in increasing FQ resistance in human isolates.12,57 However, it 
is not yet clear if the elevated rates of FQ resistance will decline 
after FQ restriction. Studies in several countries have shown that 
FQ-resistant Campylobacter persists in poultry populations after 
the withdrawal of FQ,67-70 suggesting that there is little/no fitness 
cost to FQ-resistance in Campylobacter.70,71 The latest available 
data from the United States shows that resistance to ciprofloxacin 
in human isolates of C. jejuni peaked in 2007 at nearly 26%, and 
has since declined somewhat to ~22% in 2010;54 whether this is 
a true decline attributable even in part to the enrofloxacin ban is 
debatable.

In Campylobacter, there are two well-described mechanisms 
that underlie resistance to FQ: (1) inactivation of the target of 
FQ; (2) efflux of FQ. These two mechanisms work together syn-
ergistically.72-74 In general, the two intracellular enzymatic targets 
of FQ are DNA gyrase (encoded by gyrA and gyrB) and the struc-
turally related topoisomerase IV (encoded by parC and parE).75 
Fluoroquinolones form a stable complex with these enzymes and 
traps them onto DNA, leading to decreased DNA replication, 
transcription, and ultimately to cell death.76,77 However, several 
studies have demonstrated that C. jejuni and C. coli lack the parC 
and parE genes;41,78-80 therefore, they cannot be a source of FQ 
resistance. Instead, FQ-resistance in C. jejuni and C. coli occurs 
via specific point mutations in the quinolone resistance-deter-
mining region (QRDR) of the gyrA gene, with the Thr-86-Ile 
mutation being both the most common. This single mutation 
in gyrA leads to high-level resistance to nalidixic acid and FQ 
(ciprofloxacin minimum inhibitory concentration (MIC) >  
16 g/ml), unlike FQ resistance in E. coli or Salmonella, which 
requires the accumulation of several point mutations in the 
QRDR before high-level resistance is achieved.81 Interestingly, 
the less common Thr-86-Ala mutation confers resistance only 
to nalidixic acid but not FQ.82 Perhaps since only a single point 
mutation is required for high level resistance, FQ-resistant 
mutants appear rapidly both in animals and humans.16,67,72,73,83-88 
The less common Asp-90-Asn and Ala-70-Thr mutations in gyrA 
confer intermediate-level resistance to FQ (ciprofloxacin MIC 
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diffusion of hydrophilic molecules, including many antibiotics. 
Properties of the pore including its size and charge characteristics 
underlie the selectivity for what can pass through it. In C. jejuni 
and C. coli, MOMP forms a cation-selective pore that is smaller 
than pores typically found in E. coli,124 and therefore should limit 
the entry of most antibiotics with a molecular weight greater than 
360 such as the macrolides (MW > 700).45 However, since mac-
rolides are known to be very effective against Campylobacter, 
these drugs must be able to cross the outer and cytoplasmic mem-
branes. Whereas porins provide an aqueous environment for the 
transport of hydrophilic molecules, the relatively hydrophobic 
macrolides are thought to gain access to the cytoplasm of Gram-
negative bacteria via a “hydrophobic pathway”.125,126 This pathway 
seems to be promoted in E. coli and Salmonella strains bearing 
mutations in lipopolysaccharide (LPS) synthesis genes that yield 
truncated LPS (lacking hydrophilic O-antigen sugars). The outer 
membranes of these mutant strains are therefore relatively more 
hydrophobic than the parent strains, and exhibit increased sus-
ceptibility to hydrophobic antibiotics including macrolides.126 
Given that Campylobacter naturally expresses lipooligosaccha-
ride (LOS), which lacks the hydrophilic sugars expressed by full-
length LPS in other Gram-negative bacteria,127,128 it is reasonable 
to speculate that this comparatively increased outer membrane 
hydrophobicity promotes the uptake of macrolides. This is sup-
ported by the observation that LOS truncation increases the 
susceptibility of C. jejuni to erythromycin by 8-fold, an effect 
that was doubled in C. jejuni mutants also carrying the A2074G 
mutation.46

β-Lactam Resistance

The β-lactam antibiotics are a diverse class of compounds includ-
ing penicillins, cephalosporins, carbapenems and monobactams, 
all of which contain the β-lactam ring required for antimicro-
bial activity. Individual members of this family are distinguished 
by various side chains that confer particular properties such as 
pharmacokinetics, resistance to stomach acid, hydrolysis by β 
lactamases, etc. By binding to and thereby inactivating the bac-
terial peptidoglycan transpeptidases (also known as penicillin-
binding proteins) required to catalyze the final cross linking step, 
the resulting bacterial cell walls lack structural integrity and are 
subject to osmotic swelling and lysis. Exactly how this leads to 
bacterial cell death is not completely clear, but the unopposed 
action of autolysins, necessary for normal turnover and remodel-
ing of peptidoglycan, may play a role.129

Three mechanisms mediate β-lactam resistance in 
Campylobacter: (1) enzymatic inactivation by chromosomally-
encoded β-lactamases, (2) reduced uptake due to alterations in 
outer membrane porins and (3) efflux.

Expression of a penicillinase-type of β-lactamase in 
Campylobacter confers resistance to amoxicillin, ampicillin and 
ticarcillin, which can be overcome with the β-lactamase inhibi-
tors tazobactam, clavulanic acid and sulbactam.105 This enzyme 
does not affect susceptibility to the carbapenems or cephalo-
sporins. More recently, a class D β-lactamase OXA-61, was 
identified in Campylobacter.130 This enzyme shows similarity 

A fourth mechanism of macrolide resistance, enzymatic modifi-
cation of macrolides, has not been described in Campylobacter.102

As in other bacteria, point mutations in the peptidyl encoding 
region in domain V of the 23S rRNA gene at positions 2074 and 
2075 (corresponding to positions 2058 and 2059 in E. coli num-
bering) confer high-level macrolide resistance,101,103-109 with the 
2075 substitution being more common.104,110 C. jejuni and C. coli 
carry three copies of 23s rRNA gene,41,111 all of which are usually 
mutated in macrolide-resistant strains. However, some strains 
with lower MICs to macrolides have been found to have only 
two mutated gene copies, suggesting a gene dosage effect.110,112,113 
Strains harboring single mutations in 23S rRNA have not been 
reported. Mutations (usually insertions) in the ribosomal pro-
teins L4 and L22 leading to macrolide resistance but are not the 
major means of tetracycline resistance.100,106

The barrier to the generation of macrolide resistance 
in Campylobacter appears to be much higher than that of 
FQ-resistance. In two studies, several weeks of tylosin admin-
istration to poultry at a growth-promotion dose was necessary 
to select for macrolide resistance.101,114 In another departure 
from FQ-resistant Campylobacter, macrolide resistance imparts 
a fitness cost, at least when analyzed in competition experi-
ments.114-118 These two factors combined with a low spontane-
ous mutation rate leading to macrolide resistance (~10-10 per cell 
per generation)101 and clinical efficacy, make macrolides the drug 
of choice to treat campylobacteriosis. Through 2008, there was 
concern in the US about increasing macrolide resistance in both 
C. jejuni and C. coli (2.3% and 10.1%, respectively), but there 
was a decline over the following two years to 1.2% and 4.3% for 
these strains.54 As of 2010 in the European Union, the highest 
rates of macrolide resistance for C. jejuni is in Malta (10%), and 
Italy for C. coli (33%).119 Unfortunately, rates are much higher in 
parts of Asia and Africa; for example, in Nigeria, nearly 80% of 
strains are macrolide-resistant.120 Similar to observations made 
with FQ-resistance in South Africa, 88% of Campylobacter iso-
lates from poultry raised commercially were erythromycin resis-
tant vs. 0% for those isolates from small-scale family farms.62

The multidrug efflux pump CmeABC also contributes to 
macrolide resistance36,37,101,107,113,121 and functions synergistically 
with 23S rRNA mutations to effect high-level macrolide resis-
tance.43,100,122 In mutants that are macrolide-resistant but lack 23S 
rRNA mutations, gene disruption of cmeB or antisense-mediated 
gene silencing of cmeA leads to inactivation of the CmeABC 
transporter and mediates reversion to a macrolide-susceptible 
phenotype.100,123 The putative efflux pump CmeG may also 
contribute to macrolide resistance, as insertional mutagenesis 
of cmeG causes an 8-fold reduction in erythromycin resistance 
vs. the wild-type parent.40 In addition, there is one study that 
suggests the existence of a second efflux system that contributes 
to low-level macrolide resistance, but it has not been further 
characterized.107

A third mechanism of macrolide resistance involves altered 
membrane permeability mediated by expression of the major 
outer membrane porin (MOMP), chromosomally encoded by 
porA.44,45 In Gram-negative bacteria, porins are outer membrane 
proteins that form transmembrane pores and allow the passive 
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In other Gram-negatives, tetracyclines form a complex with 
magnesium, which imparts a positive charge that facilitates 
passage of the complex through pores formed by OmpC and 
OmpE.137 Although MOMP of Campylobacter shares an anti-
genically-related region to OmpC in E. coli,138,139 it is not certain 
that the high molecular weight of tetracyclines (> 400) allows 
passage through the relatively small pores (MW exclusion ~360) 
imparted by MOMP.45 Nevertheless, once inside the bacteria 
cytoplasm, tetracyclines reversibly bind to the 30S subunit of ribo-
somes and inhibit protein synthesis by preventing the attachment 
of charged aminoacyl-tRNA to the ribosomal A site.140,141 The 
major mechanism of tetracycline resistance in Campylobacter as 
well as other Gram-negatives is protection of an unoccupied A 
site by the binding of bacterial protein TetO to that site.142,143 
TetO can be encoded on the chromosome,144 or more commonly, 
on the plasmids pTet in C. jejuni145 and pCC31 in C. coli.146,147 
According to 2010 NARMS data, 43% of C. jejuni and 49% of 
C. coli isolates are tetracycline-resistant,54 making this class of 
antibiotic of little use in veterinary or human Campylobacter-
mediated disease.54,144,148

Although high-level resistance to tetracyclines can be medi-
ated by TetO alone, the contribution of efflux to tetracycline 
resistance is demonstrated by the increase in tetracycline MIC 
when efflux pumps are genetically inactivated. For example, dis-
ruption of the putative efflux pump cmeG rendered the mutant 
strain 4-fold more susceptible to tetracycline compared with 
the wild-type strain.40 Also, inactivation of the CmeABC efflux 
pump by disruption of cmeB led to an 8-fold decrease in the tetra-
cycline MIC in a TetO-minus poultry isolate,36 and similar find-
ings were described with the NCTC isolate 11168 when cmeB 
was disrupted.37 In a different study of other C. jejuni strains 
including 81-176, cmeB disruption rendered strains 16- to 64-fold 
more susceptible to tetracycline compared with the parent 
strains.112 These studies also suggested that when both CmeABC 
and TetO are functional, the impact on tetracycline resistance is 
synergistic.36,37,112

Aminoglycoside Resistance

Aminoglycosides are protein synthesis inhibitors of many Gram-
positive and Gram-negative organisms. They contain amino-
modified sugars, are positively charged, water-soluble and have 
molecular weights ranging from 445 to 600.149,150 Commonly 
used members of this group include gentamicin, kanamycin, 
amikacin, neomycin, tobramycin and streptomycin. The initial 
binding of aminoglycosides to negatively charged bacterial mem-
branes is electrostatic in nature and relatively slow compared 
with the second phase of rapid but reversible binding to the 30S 
segment of the ribosome.151 Transfer of aminoglycosides across 
the bacterial cytoplasmic membranes requires oxygen, an intact 
electron transport system and ATP.150,152,153 According to 2010 
NARMS data, > 99% of C. jejuni and 88% of C. coli isolates are 
susceptible to aminoglycosides.54 These data suggest that despite 
Campylobacter’s microaerophilic nature, sufficient oxygen is 
present for the uptake of aminoglycosides.

to other OXA-type genes in Fusobacterium, Acinetobacter and 
Pseudomonas, and mediates resistance to penicillin, oxacillin, 
ampicillin, amoxicillin-clavulanate, piperacillin and carbenicil-
lin.130,131 While OXA-61 is highly prevalent in the veterinary 
and human populations studied,131 pooled national data on 
the prevalence of β-lactam resistance in general is not avail-
able since the NARMS does not include the β-lactam class for 
Campylobacter.54 However, it appears that the prevalence of 
β-lactamase varies widely in both poultry and human popu-
lations, but is usually greater than 20%.105,131-134 Finally, two 
genes encoding a metallo-β-lactamase type of enzyme has been 
reported, although it is not yet clear if expression actually leads to 
β-lactamase resistance.131,132,135

As with macrolides, the cation-selective MOMP in C. jejuni 
and C. coli tend to exclude most β-lactams with a molecular 
weight greater than 360 or which are anionic.45 The partial posi-
tive charge and small size of imipenem (MW 299), ampicillin 
(MW 333) and cefpirome (MW 347) are consistent with passage 
through MOMP, and susceptibility to these antibiotics in the 
absence of a second mechanism such as β-lactamase production. 
Amoxicillin’s molecular weight of 365 would seem to preclude 
efficient passage through MOMP, although its partial positive 
charge might facilitate entry through MOMP; alternatively, a 
non-MOMP-dependent mechanisms may mediate its entry.45

The CmeABC efflux pump may also contribute to β-lactam 
resistance. Insertional mutagenesis of cmeB in C. jejuni strain 
81-176136 and another strain led to a 32-fold increase in ampicil-
lin susceptibility.36 In another study using NCTC strain 11168, 
the cmeB mutant was 4 times more susceptible to ampicillin com-
pared with the parent strain, and overexpression of cmeB lead 
to a 4-fold increase in ampicillin resistance.44 Inactivation of 
the putative efflux pump CmeDEF by insertional mutagenesis 
of cmeF only led to a 2-fold increase in ampicillin resistance in 
strain 11168 and a 2-fold increase in cefotaxime resistance in the 
well-described, invasive, human outbreak strain 81-176.39 Also, 
inactivation of the putative efflux pump CmeG did not affect 
cefotaxime resistance in C. jejuni strain 11168.40 Therefore, at 
this point it seems that CmeABC is the most potent efflux pump 
with regard to β-lactams.

Tetracycline Resistance

The tetracyclines were discovered in the 1940s and have activ-
ity against Gram-negative and Gram-positive organisms. Due 
to their heavy use in the past for both human and veterinary 
indications, widespread resistance has somewhat limited their 
use today. Commonly used members of this class are tetracy-
cline, doxycycline and minocycline. The tetracyclines are lipo-
philic protein synthesis inhibitors that likely use a combination 
of the hydrophobic pathway described for macrolides as well as 
outer membrane porins to gain access to the bacterial ribosome; 
exactly how each pathway contributes to tetracycline entry in 
Campylobacter is not completely clear. Known mechanisms of 
tetracycline resistance in Campylobacter are (1) alteration of tet-
racycline’s ribosomal target and (2) efflux.
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parent.40 However, no effect on streptomycin resistance was 
noted, and overexpression did not lead to increased aminogly-
coside resistance.40 Therefore, the contribution of efflux to ami-
noglycoside resistance in Campylobacter is not completely clear 
but is likely to be less important than the plasmid-borne drug-
modifying enzymes described previously.

Conclusions

Antibiotic resistance in C. jejuni is an increasing problem, as it 
is in many other microorganisms. Due to Campylobacter’s nat-
ural competence and hypervariable genomic sequences,41 there 
is considerable genomic plasticity that supports the emergence 
of resistant mutants. Because Campylobacter is a commensal of 
many animal species that are exposed to veterinary antimicro-
bials, ample opportunity exists for Campylobacter to continue 
to evolve additional resistance mechanisms. Furthermore, the 
over-use of antibiotics in the human population is an additional 
important source of selective pressure. Both scenarios contribute 
to the current problem of FQ resistance in Campylobacter. In 
this regard, the lack of a fitness cost (and perhaps even a fitness 
advantage71) of FQ-resistant C. jejuni is an issue that must be 
remembered when future resistance mutations arise in C. jejuni 
against other antimicrobials. Of greatest clinical concern would 
be the emergence of widespread macrolide resistance, since this 
class is the current treatment of choice for campylobacteriosis. A 
better understanding of the mechanism of macrolide entry (pos-
sibly via the hydrophobic pathway) may be useful in eventually 
mitigating the impact of acquired macrolide resistance. Also, the 
contribution of efflux pumps to antibiotic resistance warrants 
further study, since this mechanism acts synergistically with 
other mechanisms of antibiotic resistance to confer high-level 
resistance in many instances. Furthermore, genome sequencing 
predicts 14 potential efflux pumps,41 but only CmeABC and 
CmeG have been studied functionally,40,44,161 making this a fertile 
area for future research.

The antibiotic resistance mechanisms discussed herein are 
summarized in Figure 1.
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There are two major means by which aminoglycosides exert 
antimicrobial activity: (1) interference with the translocation 
of the nascent peptide chain from the ribosomal A site to the P 
site leading to premature termination, and (2) interference with 
proof-reading, leading to incorporation of incorrect amino acids 
and dysfunctional protein.154 The main mechanism of amino-
glycoside resistance in C. jejuni is via aminoglycoside modifying 
enzymes, which are usually plasmid-borne.

Aminoglycoside resistance was first detected in C. coli and was 
mediated by a 3'-aminoglycoside phosphotransferase (encoded by 
aphA-3) that had been previously described as conferring kana-
mycin resistance in Streptococcus and Staphylococcus.29 This 
aphA-3 gene remains the most common source of aminoglycoside 
resistance in Campylobacter. In some strains, aphA-3 is located 
downstream of an insertion sequence (IS607*) bearing similarity 
to IS607 found in H. pylori.27 In other strains, aphA-3 is found 
with genes encoding streptomycin resistance (encoded by aadE, a 
6'-adenylyl transferase) and streptothricin resistance (encoded by 
sat, an acetyl transferase).27 The existence of a similar resistance 
cluster in Enterococcus suggests that Campylobacter acquired 
these genes via horizontal transfer.27 Other Campylobacter 
strains harbor mosaic plasmids that contain various aminoglyco-
side resistance genes and insertion or transposon sequences from 
Gram-negative (i.e., H. pylori, E. coli and Salmonella) and Gram-
positive sources (i.e., Enterococcus), along with tetO.24,25,27,28,30-

32,34,35 Acquisition of such plasmids by susceptible C. jejuni 
confers a multi-drug-resistant phenotype and that can present a 
clinical challenge in both the veterinary and human populations.

Other genes which confer kanamycin resistance include 
aphA-1 and aphA-7, which were detected on plasmids in 
C. jejuni.155-157 Unlike aphA-3 and aphA-1, which are thought 
have been horizontally acquired, aphA-7 has a similar G-C con-
tent to C. jejuni chromosomal DNA, suggesting it is intrinsic in 
Campylobacter.158 Finally, there is a single report of a mutation 
in ribosomal protein S12 (encoded by rpsL) in C. coli that confers 
streptomycin resistance, but a similar mutation has not yet been 
described in C. jejuni.159

The contribution of efflux to aminoglycoside resistance is less 
clear. In one study, the putative efflux pump inhibitors phenyl-
arginine-β-naphthylamide and 1-(1-naphthylmethyl)-piperazine 
did not affect the MIC of kanamycin in 5 C. jejuni strains.160 
Another study which directly measured the effect of the putative 
efflux pump CmeG by insertional mutagenesis and comparison 
of MICs of various antibiotics found 16-fold reduction in genta-
micin resistance in the mutated CmeG strain vs. the wild-type 
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