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Review and evaluation of penalised
regression methods for risk prediction in
low-dimensional data with few events
Menelaos Pavlou,a*† Gareth Ambler,a Shaun Seaman,b
Maria De Iorioa and Rumana Z Omara

Risk prediction models are used to predict a clinical outcome for patients using a set of predictors. We focus
on predicting low-dimensional binary outcomes typically arising in epidemiology, health services and public
health research where logistic regression is commonly used. When the number of events is small compared with
the number of regression coefficients, model overfitting can be a serious problem. An overfitted model tends to
demonstrate poor predictive accuracy when applied to new data. We review frequentist and Bayesian shrinkage
methods that may alleviate overfitting by shrinking the regression coefficients towards zero (some methods can
also provide more parsimonious models by omitting some predictors). We evaluated their predictive performance
in comparison with maximum likelihood estimation using real and simulated data. The simulation study showed
that maximum likelihood estimation tends to produce overfitted models with poor predictive performance in
scenarios with few events, and penalised methods can offer improvement. Ridge regression performed well,
except in scenarios with many noise predictors. Lasso performed better than ridge in scenarios with many noise
predictors and worse in the presence of correlated predictors. Elastic net, a hybrid of the two, performed well in
all scenarios. Adaptive lasso and smoothly clipped absolute deviation performed best in scenarios with many noise
predictors; in other scenarios, their performance was inferior to that of ridge and lasso. Bayesian approaches
performed well when the hyperparameters for the priors were chosen carefully. Their use may aid variable selec-
tion, and they can be easily extended to clustered-data settings and to incorporate external information. © 2015
The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
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1. Introduction

The usefulness of risk prediction models for informing patients and practitioners about the future course
of a disease, guiding therapeutic strategies, aiding selection of patients for inclusion in randomised trials
and in surveillance has been well established [1–3]. Often, a risk prediction model is developed using
a regression model that associates the outcome to patient characteristics, the predictor variables. For
binary outcomes, a logistic regression model is commonly used. In model fitting, the regression model is
fitted to the data at hand (training or development data set) to estimate the regression coefficients. These
estimated coefficients can then be used to predict the outcome in new patients. However, a risk model
that performs well on the training data set may not perform equally well when it is applied to new data.
Therefore, its predictive performance needs to be assessed, that is, the model needs to be validated before
it can be used to make predictions. A good risk model should be able to demonstrate good calibration,
discrimination and predictive accuracy in new data. Since last decade, risk models that are commonly used
in practice such as the ‘QRISK-2’ and the ‘Framingham’ calculator for the risk of cardiovascular disease
[4, 5] and the ‘HCM-SCD calculator’ for the risk of sudden cardiac death in patients with hypertrophic
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cardiomyopathy [6], all use the coefficients estimates from the model fitting directly into a risk calculator
to calculate risks for patients. In this paper, we focus on this form of risk calculation.

There are several reasons why the apparent performance of a model might not hold in the validation
data. One of these is model overfitting, which is likely to arise when the number of events in the training set
is small compared with the number of estimated regression coefficients. In health research, such scenarios
may arise, for example, in studies of rare events or rare diseases. An overfitted model tends to capture not
only the underlying processes that generated the data but also noise in the training data set, and typically
overestimates or underestimates the risk of the event for high-risk or low-risk patients. For example, a
cardiac risk model has been developed to predict the 5-year risk of sudden death (rare event) in patients
with hypertrophic cardiomyopathy and guide the implantation of implantable cardioverter defibrillators
(a small device used to regulate arrhythmias) [6]. Among 3672 patients with complete data, there were
only 42 sudden deaths within the first year after first evaluation. Overestimating the risk of sudden death
could lead to the unnecessary implantation of implantable cardioverter defibrillators, exposing patients
to unnecessary risks and also wasting resources. An example of a rare disease is penile cancer, which has
an annual incidence of 1.3–2.0 per 100 000 men. In a study to predict the risk of death from penile cancer
[7], only 128 patients with penile cancer were available of which 25 died, making the development of a
reliable prediction model challenging.

Often, after employing expert knowledge to reduce the number of potential predictors, the ratio of the
number of events to the number of regression coefficients to be estimated (‘events per variable’ or EPV)
is low. As a rule of thumb, it has been suggested that prediction models are likely to be reliable when the
EPV is at least 10 (e.g. [8]). This cut-off has been challenged as not being based on convincing scientific
reasoning [3], and in fact, it is based on empirical evidence for obtaining valid estimates of standard
errors for regression coefficients, rather than reliable risk prediction [9, 10]. Nevertheless, the EPV is
frequently mentioned in reports of clinical prediction studies, as revealed by the systematic review of
Bouwmeester et al. [11], and is useful for quantifying the amount of information in the data relative to
model complexity. In order to meet the EPV recommendations, researchers employ practical approaches
such as stepwise selection and univariable screening to reduce the EPV. Note that EPV should be based
on the initial model, before any variable selection is carried out. These naive approaches have long been
known to have significant drawbacks, and notes of caution have been raised [8,12,13]. Additionally, it is
not unusual that even after reducing the EPV by univariable screening or stepwise selection, the resulting
model still has low EPV and, therefore, is susceptible to overfitting.

One simple way to reduce overfitting is to fit the model using maximum likelihood estimation (MLE)
and then shrink the regression coefficients, post-estimation, by a common factor (linear shrinkage factor
(LSF)). The shrinkage factor is in essence an estimate of the amount of overfitting and can be obtained
using bootstrapping [8]. Harrell [8] noted that using an LSF is not as good as building shrinkage into the
estimation process using penalised regression. The latter allows differential shrinkage of the regression
coefficients. Two popular penalised regression methods are ridge and lasso. Both shrink the regression
coefficients towards zero; lasso can also perform variable selection by shrinking some coefficients to
exactly zero. For risk prediction in low-dimensional settings, little attention has been devoted to these
methods. Ambler et al. [13] explored the use of ridge and lasso for low-dimensional survival data with
few events and concluded that both methods improve calibration, discrimination and predictive accuracy
compared with standard Cox regression. They also used backwards elimination, LSF and univariable
screening and found that these methods were inferior to ridge or lasso, with LSF tending to over-shrink
in low EPV scenarios. Steyerberg et al. [12] suggested that shrinkage is necessary when EPV < 10
and advisable for 10 < EPV < 20. Extensions of ridge and lasso, such as elastic net, adaptive lasso
and smoothly clipped absolute deviation (SCAD), have been proposed relatively recently. These have
been proposed to improve variable selection compared with lasso and have been mainly used in high-
dimensional settings. Their predictive performance in low-dimensional settings has been studied less.
Porzelius et al. [14] used bootstrapping to compare lasso, elastic net and SCAD in low-dimensional
survival data. They predominantly studied variable selection aspects when the EPV exceeded 10 and
found that SCAD performed best when there were both true and noise predictors in the model. For EPV
less than 10, they found that all techniques had lower prediction error than standard Cox regression.

As previously mentioned, some of the methods considered in this work (e.g. lasso) can also perform
variable selection in the sense that in addition to shrinking regression coefficient estimates towards zero,
they may also exclude ‘superfluous’ predictors by shrinking their coefficients to exactly zero. This is
important when a more parsimonious model is sought. The various methods have different properties
with respect to selecting true predictors with high probability or excluding noise predictors with high

1160

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1159–1177



M. PAVLOU ET AL.

probability, as we discuss later. However, prediction and variable selection are two separate issues, and
in this paper, we primarily focus on the first. So, we are interested in comparing different methods with
respect to their ability to produce models with good predictive performance.

One challenge when using frequentist penalised methods is obtaining meaningful estimates of preci-
sion for the parameter estimates [15]. Kyung et al. [16] demonstrated the problem of obtaining a valid
standard error for a coefficient whose true value is zero when lasso is used. They argued that using a
Bayesian approach to shrinkage would provide valid precision measures (posterior standard deviations
and credible intervals). It would also yield, for each coefficient, a posterior distribution, which could help
with any variable selection decisions. It is important to note, however, that frequentist coverage of the
posterior credible intervals is not guaranteed because the likelihood does not dominate the prior unless
the sample size is large [16, 17].

Bayesian analogues of ridge and lasso are often referred to as ‘Bayesian regularisation’. They use nor-
mal and double exponential priors, respectively, for the regression coefficients. Another popular approach
to performing Bayesian variable selection and estimation is based on ‘spike and slab’ priors, but its
use for prediction in low-dimensional data has been infrequent. From the wide spectrum of Bayesian
methodology for estimation and variable selection, in this work, we focus on Bayesian regularisation
and the spike and slab approach. Rockova et al. [18] applied a large selection of Bayesian approaches in
low-dimensional settings and focused on the ability of the methods to select the right subset of potential
predictors, rather than on the predictive performance of the derived models. They found that in sparse sce-
narios (i.e. scenarios with many noise predictors compared with the number of true predictors), the spike
and slab approach performed best, while in non-sparse scenarios, Bayesian regularisation was better.

In this article, we focus on the predictive performance of regression models with low-dimensional
data, binary outcome and few events. We (i) evaluate the predictive performance of frequentist penalised
methods using simulation studies. We also investigate the sensitivity of the results to the choice of tuning
parameters via a single cross-validation and to the method of standardisation of predictors; (ii) explore the
use of Bayesian approaches to alleviate overfitting; (iii) discuss and explore the ability of frequentist and
Bayesian methods to construct confidence/credible intervals for predicted probabilities; and (iv) make
recommendations about application of these methods in practice.

The article is organised as follows. In Section 2, we provide a review of frequentist and Bayesian
shrinkage methods, listing their main theoretical properties relevant to risk prediction in low-dimensional
settings. Section 3 presents a case study where a real low-EPV data set of patients with penile cancer is
analysed using the various approaches. In Section 4, we simulate binary data based on the penile cancer
data set for two EPV scenarios and compare the predictive performance of the methods. We also explore
the coverage properties of confidence and credible intervals for predicted probabilities and discuss the bias
introduced in the coefficient estimates for each of the methods considered. We consider further scenarios
of interest in Section 5 and use artificial data to explore these. We present a data illustration in Section 6,
and we conclude with a discussion and recommendations about the practical application of the methods.

2. Regression methods for predictive modelling in data sets with few events

2.1. Classical methods

For binary data, a logistic regression model is commonly used: logit(E(Y|X)) = 𝜷TX, where Y is the
binary outcome, X = (1,X1,… ,Xp) is the vector of covariate values and 𝜷 = (𝛽0, 𝛽1,… , 𝛽p)T is a
(p + 1)−dimensional vector of regression parameters. In MLE, the model is fitted by maximising the
log-likelihood function denoted by l(𝜷). In penalised likelihood estimation, l(𝜷) is instead maximised
subject to constraints on the values of the regression coefficients. The regression coefficient estimates are
typically shrunk towards zero in comparison with MLE, and this may help alleviate overfitting.

Often, penalised likelihood estimation is expressed as an optimisation problem of finding the value
of 𝜷 which, in the simplest case, maximises a function of the form l(𝜷) − 𝜆pen(𝜷), where pen(𝜷) is the
‘penalty term’ and 𝜆 is the ‘tuning’ parameter. The penalty term corresponds to the functional form of the
constraint, and the tuning parameter corresponds to the amount of shrinkage applied; 𝜆 = 0 corresponds
to standard MLE. Different forms for the penalty have been proposed (some of which may involve more
than one tuning parameter). The tuning parameter is usually selected using a data-driven procedure such
as cross-validation [19] to maximise the ‘out-of-sample’ performance of the model. We now consider the
most popular types of penalised methods.

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1159–1177
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• Ridge [20], or L2 penalization, uses a penalty proportional to the sum of squares of regression

coefficients, so �̂� = argmax
{

l(𝜷) − 𝜆2
∑p

j=1 𝛽
2
j

}
. Ridge was initially designed to deal with issues of

multicollinearity [21]. In the context of risk prediction, it shrinks the regression coefficients towards
zero and has been seen to perform well in scenarios with correlated predictors.

• Lasso [22], or L1 penalization, imposes a constraint on the sum of the absolute value of regression

coefficients, so �̂� = argmax
{

l(𝜷) − 𝜆1
∑p

j=1 |𝛽j|}. It shrinks the regression coefficients towards zero
but can also perform variable selection by shrinking some coefficients to exactly zero. This method
has been seen to under-perform in the case of correlated predictors in the sense that it may select one
at random from a group of highly correlated predictors [23]. This can affect the interpretability of
the model and compromise its predictive accuracy [23]. Bühlmann and van de Geer [24] explored
the theoretical properties of lasso and noted that it should mostly be seen as a variable ‘screening’
rather than ‘selection’ method, in the sense that it tends to select large models by allowing some
noise predictors to enter the model.

• ‘Elastic net’ [23], a hybrid of ridge and lasso, has a penalty with both ridge and lasso parts: �̂� =
argmax

{
l(𝜷) − 𝜆1

∑p
j=1 |𝛽j| − 𝜆2

∑p
j=1 𝛽

2
j

}
. As such, it shares the strengths of the two: it can produce

more parsimonious models than ridge by performing variable selection while also tending to select
or omit highly correlated predictors as a group.

• Adaptive lasso [25] is another variant of lasso. It allows a different weight for each parameter in the
penalty term: �̂� = argmax

{
l(𝜷) − 𝜆1

∑p
j=1 𝜔j|𝛽j|}. The weights 𝜔j are data-dependent (usually the

inverse of the corresponding coefficient from ridge regression). As a result, coefficients of strong
predictors are shrunk less than the coefficients of weak predictors. Zou [25] showed that when the
weights are data-dependent and appropriately chosen, the adaptive lasso can enjoy the oracle property
(i.e. the probability that it correctly selects the predictors with non-zero coefficients converges to one
as the sample size increases and the estimators of the non-zero coefficients are asymptotically normal
with the same mean and covariance that they would have if the zero coefficients were known in
advance). Adaptive lasso has been designed for variable selection in high-dimensional settings, and
Zou [25] noted that the oracle property does not guarantee optimal predictive performance in finite
samples; instead, lasso can be better for certain prediction problems (for example when coefficients
are small and/or the noise predictors are few [26, 27]).

• Smoothly clipped absolute deviation (SCAD) [28] is another method that performs parameter
estimation and simultaneous variable selection. It uses a non-concave quadratic spline penalty
function:

pen(𝛽j) =

⎧⎪⎪⎨⎪⎪⎩

𝜆|𝛽j| if |𝛽j| < 𝜆

𝜆(a−|𝛽j|∕2𝜆)
a−1

if 𝜆 < |𝛽j| ⩽ a𝜆

𝜆
a2𝜆

2(a−1)|𝛽j| if |𝛽j| > a𝜆.

There are two tuning parameters to be chosen, a > 2 and 𝜆 > 0. Fan 2001 [28] suggested using
a = 3.7 and selecting 𝜆 using cross-validation. In principle and in practice, SCAD applies a shrinkage
pattern similar to that of adaptive lasso, so large coefficients are penalised less than small coefficients.

Predictors are standardised to have mean zero and unit variance before using penalised estimation. To
obtain regression coefficient estimates on the original scale, each coefficient estimate is divided by the
original standard deviation of the corresponding predictor. The intercept on the original scale is 𝛽or

0 =
𝛽sc

0 −
∑p

j=1 X̄j 𝛽
sc
j , where the superscript sc indicates the coefficients for the standardised data. We adopted

this scaling, which is the default option in most software packages, but other scaling patterns have also
been proposed. For example, Gelman et al. [29] suggested centering all predictors and scaling continuous
predictors to have standard deviation of 0.5, equal to the standard deviation of a binary predictor with
prevalence of 0.5, their reasoning mainly being to obtain more interpretable coefficient estimates on a
‘common’ scale. For the settings considered in this paper, there was no indication that the two scaling
methods result in substantially different predictive performances of the methods (further discussion on
the choice of standardisation can be found in the Supporting Information material, Section S2).
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2.1.1. Confidence intervals for regression coefficients and predicted probabilities. Confidence intervals
for predicted probabilities can provide an indication of how precise the estimate is. In some situations in
clinical practice, it may be useful to communicate to a patient a range for the predicted probability rather
than a single point estimate. However, confidence intervals around estimates of regression coefficients and
individual predicted probabilities obtained from penalised methods are problematic. Penalised methods
introduce bias towards the null (to reduce the mean squared error), and confidence intervals are not very
meaningful for strongly biased estimators [30]. Most software packages deliberately do not provide stan-
dard errors for the coefficients. Although standard errors can be obtained using bootstrapping [22], Kyung
et al. [16] raise a note of caution regarding their use. In particular, they showed that for lasso, the bootstrap
standard errors are not valid for the coefficients with zero true value. Chatterjee et al. [31] and Sortari
[15] suggested modified bootstrap methods, but their improvements mostly apply only in linear models.
Despite these issues, if one wishes to calculate confidence intervals for the predicted probabilities, these
may be obtained using the Delta method [32] after first using bootstrap to estimate var(𝜷).

2.2. Bayesian regularisation and spike and slab priors

2.2.1. Bayesian regularisation. The majority of the classical penalised methods have a Bayesian ana-
logue, often referred to as ‘Bayesian Regularisation’. Most regularisation priors are, conditionally on a
variance parameter, Gaussian: 𝛽j|𝜎2 ∼ N(0, 𝜎2). Different prior assumptions about 𝜎2 induce different
marginal distributions for 𝛽j.

For Bayesian ridge regression, 𝛽j ∼ Normal(0, 𝜎2). If 𝜎2 is treated as fixed rather than assigned a prior,
then 𝜆 = 1∕𝜎2 corresponds to the tuning parameter of the frequentist ridge. Bayesian and frequentist
ridge are the same in the sense that the posterior mode (and mean) of the regression coefficients equal the
estimates from frequentist ridge. To allow a more flexible shrinkage pattern of the regression coefficients,
𝜎2 can be assigned a suitable hyperprior, usually 𝜎2 ∼ InvGamma(a, b), in which case marginally, the
coefficients follow a scaled Student’s t distribution.

In Bayesian lasso [33], the following hierarchical specification is often used: 𝛽j|𝜎2 ∼ Normal(0, 𝜎2);
𝜎2|𝜆2 ∼ Exp(0.5𝜆2); 𝜆2 ∼ Gamma(a, b). Then, 𝛽j follows a Laplace (double exponential) distribution∶
𝛽j|𝜆 ∼ DE(𝜆) given 𝜆. If 𝜆 is taken as fixed rather than assigned a gamma prior, then 𝜆 corresponds
to the tuning parameter in the frequentist lasso, and the mode of the posterior distribution of the coeffi-
cients (‘Maximum a posteriori’ or ‘MAP’ estimates) coincides with the estimates of the traditional lasso.
More often, a hyperprior is assigned to 𝜆 and variable selection is carried out by examining the poste-
rior distribution of the regression coefficients. As the posterior mean/median is never zero with positive
probability, variable selection is performed by ‘hard shrinkage’, that is, a coefficient is set to zero if the
absolute value of its mean/median does not exceed a specified threshold.

Fahrmeir et al. [34] noted that if we assign hyperpriors to the tuning parameters for Bayesian ridge and
lasso, the interpretation of the penalty changes (compared with treating the tuning parameters as fixed).
In particular, the marginal priors of Bayesian ridge and lasso are quite close after integrating out the
hyperparameters, and the two tend to perform very similarly [35]. In our real analyses and simulations,
Bayesian lasso and Bayesian ridge indeed gave nearly identical estimates. We therefore present only
results for the first. For Bayesian lasso, it is suggested that the Gamma hyperprior for 𝜆2 be chosen to be
relatively flat [33].

2.2.2. Estimation and variable selection based on spike and slab priors. An alternative Bayesian
approach suitable for coefficient estimation while performing simultaneously variable selection is based
on ‘spike and slab’ priors. Each component of 𝜷 has a prior that is a mixture of a distribution with its
mass concentrated around zero (‘spike’) and one with a mass spread over a large range of values (‘slab’).

George et al. [36] used the ‘stochastic search variable selection’ approach (SSVS), where the spike
and slab prior is of the form 𝛽j ∼ (1 − 𝛾j)N(0, 𝜎2) + 𝛾jN(0, c2𝜎2). The binary inclusion indicators,
𝛾j, are assigned Bernoulli(q) prior distributions, and a suitable hyperprior is assigned to q (we use
q ∼ Uniform[0, 1], but other options e.g. a Beta distribution could also be used). The parameter c
(c > 1), chosen by the analyst, expresses the difference between the spike and the slab. To choose the
spike and slab variances, note that the two corresponding densities intersect at the points ±𝜎𝜖 where
𝜖 =

√
(2log(c)c2∕(c2 − 1)). Then 𝛿 = 𝜎𝜖 can be interpreted as a threshold of practical significance in

the sense that ‘all coefficients in the interval [−𝛿,+𝛿] can be interpreted as practically zero’ [18]. So
given c, 𝜎 can be selected to detect a ‘zero effect’ with required accuracy 𝛿. Larger values of c induce
higher slab variance, allowing large effects to take on arbitrarily large values and encouraging stronger

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1159–1177
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penalisation of small non-zero effects. Larger values of c are therefore more suited to sparse underlying
models. On the other hand, small values of c reflect the belief that there are few zero effects and there-
fore are suited to non-sparse models. For example, 𝛿 = 0.1 and c = 10 correspond to variances for spike
and slab 𝜎2 = 0.0021 and 𝜎2c2 = 0.21, respectively, while for 𝛿 = 0.1 and c = 100, 𝜎2 = 0.001 and
𝜎2c2 = 10. Variable selection can be carried out by selecting variables with posterior inclusion prob-
ability (i.e. the mean of the posterior distribution of 𝛾j) of more than 0.5. The shrinkage properties of
SSVS are sensitive to the shape of the spike and the slab. Rockova et al. [18], who focused on variable
selection, considered three combinations of c and 𝛿, two of which were suitable for aggressive shrink-
age (c = 100, 𝛿 = 0.05 or 0.1) and one for ‘softer’ shrinkage (c = 10, 𝛿 = 0.1). In this work, which
focuses on risk prediction, we choose the values of hyperparameter c for a given 𝛿 using cross-validation.
Specifically, unless stated otherwise, we select the value of c using cross-validation over a grid of values
(c = 3, 5, 8, 10, 15, 20, 30 or 50) for fixed 𝛿 = 0.1.

In one variant of SSVS, Ishwaran et al. [37] suggested moving the mixture element one level down, that
is, on the variances rather than on the regression coefficients directly. They placed inverse gamma priors
on the slab and spike variances and called this approach ‘normal mixture of inverse gamma’ (NMIG).
O’Hara and Sillanpaa [38] provide a nice review of the Bayesian approach to model selection. In this
work, we applied the SSVS and NMIG approaches, which gave almost identical results, and so we only
present results from SSVS.

2.2.3. Credible intervals for regression coefficients and predicted probabilities. The estimated posterior
distribution of the regression coefficients can be easily used to obtain credible intervals for regression
coefficients and predicted probabilities. However, a note of caution should be added here regarding
the frequentist coverage of Bayesian credible intervals. Bayesian credible intervals should have their
corresponding asymptotic frequentist coverage provided that the prior distribution assigns a non-zero
probability to the true value of the quantities to be estimated. However, in the scenarios considered in this
paper, the sample sizes are relatively small and the prior distributions are informative, and so the asymp-
totic properties may not apply. As a result, the correct frequentist coverage of Bayesian credible intervals
is not guaranteed. This was noted by Kyung et al. [16], who did not present any coverage results in their
simulation studies, and more recently by Efron [17].

2.3. Software

All the analyses and simulations were carried out in R. We used the package ‘glmnet’ to fit models using
ridge, lasso and adaptive lasso and the packages ‘pensim’ for elastic net and ‘ncvreg’ for SCAD. The
tuning parameters were selected using 10-fold cross-validation. For Bayesian methods, we used JAGS
to compile the models and obtained the samples using the R-JAGS interface provided by the package
‘rjags’. We used 15 000 iterations with 5000 burn-in sample. The Gelman–Rubin diagnostics were used
to verify that parallel chains converged to the same posterior distribution. In the Supporting Information
material (Section S1), we provide details and the functions used to fit the Bayesian lasso and SSVS using
R and JAGS.

3. A case study: penile cancer

Penile cancer is a rare disease. Over an 18-year period, 128 patients were diagnosed with invasive
squamous cell carcinoma of the penis and treated within the North London Cancer Network. For this
case study, the outcome of interest is defined as death within 5 years from the time of diagnosis.
Twenty-five deaths were observed, and we considered nine potential predictors. Five of them were con-
tinuous: three biomarkers, proteins that reflect aggressive cell cycle phenotypes [7] (‘Ki67’, ‘Mcm2’ and
‘Ki67-g95’), age at diagnosis (‘age’) and depth of invasion (‘depthin’). The rest were binary: lymph node
status (‘lymphnode’), lymphovascular invasion (‘vascinv’), tumour extent (‘extent’) and DNA ploidy
status (‘ploidy’). A logistic regression model was fitted using the nine predictors and the EPV was
just 2.8( = 25∕9). The following abbreviations are used for the methods: ENET, elastic net; ALASSO,
adaptive lasso, BLASSO, Bayesian lasso; SSVS, stochastic search variable selection.

Here, we aim to illustrate the application of penalised regression methods for a binary outcome (death
from penile cancer), and we focus on the shrinkage-related properties of the methods rather than on their
predictive performance, which is assessed in the next section. For the SSVS method, in addition to using
cross-validation to choose the value of c, we present the results obtained when c was fixed to equal 30.
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Table I. Penile cancer case study: standardised regression coefficient estimates and percentage shrinkage (in
parentheses) compared with MLE.

SSVS SSVS
MLE RIDGE LASSO ENET ALASSO SCAD BLASSO (c =10) (c =30)

age 1.03 0.60 (42) 0.56 (46) 0.58 (44) 0.58 (44) 0.31 (70) 0.75 (28) 0.60 (42) 0.89 (14)
depthin 0.85 0.54 (37) 0.60 (29) 0.59 (30) 0.69 (19) 0.44 (48) 0.67 (21) 0.58 (31) 0.88 (−4)
Ki67 −0.20 −0.06 (70) 0.00 (100) 0.00 (100) 0.00 (100) 0.00 (100) 0.00 (100) −0.01 (93) 0.00 (100)
Mcm2 −0.58 −0.01 (98) 0.00 (100) 0.00 (100) 0.00 (100) 0.00 (100) 0.00 (100) 0.01 (98) 0.00 (100)
Ki67-g95 0.70 0.17 (75) 0.00 (100) 0.00 (100) 0.00 (100) 0.00 (100) 0.00 (100) 0.12 (82) 0.00 (100)
lymphnode 1.34 0.91 (32) 1.01 (25) 1.00 (25) 1.12 (16) 1.27 (5) 1.17 (13) 0.95 (29) 1.32 (2)
vascinv 0.35 0.23 (34) 0.08 (79) 0.10 (72) 0.00 (100) 0.00 (100) 0.00 (100) 0.18 (51) 0.00 (100)
extent 0.36 0.24 (33) 0.13 (65) 0.15 (59) 0.00 (100) 0.01 (97) 0.00 (100) 0.19 (49) 0.00 (100)
ploidy 0.71 0.37 (49) 0.22 (69) 0.25 (65) 0.08 (89) 0.00 (100) 0.39 (45) 0.30 (57) 0.38 (46)

For SSVS, c = 10 was the value selected using cross-validation. MLE, maximum likelihood estimation; BE, backwards
elimination; LSF, linear shrinkage factor; ENET, elastic net; ALASSO, adaptive lasso; BLASSO, Bayesian lasso; SSVS,
stochastic search variable selection; SCAD, smoothly clipped absolute deviation.

Because the value selected by cross-validation was c = 10, the additional use of c = 30 allows us to
illustrate how the results depend on the value of this parameter.

In Table I, we present standardised coefficient estimates (i.e. after scaling the predictors to have mean
zero and variance one) for each method and percentage shrinkage compared with MLE. The coefficients
from MLE vary substantially in magnitude, from −0.20 (biomarker ‘Ki67’) to 1.34 (lymph node status).
Overall, ridge tends to shrink the MLE estimates more uniformly (apart from the three biomarkers) than
the other methods. Adaptive lasso, SCAD, Bayesian lasso and SSVS with c = 30 shrink the most coef-
ficients to zero (5), followed by lasso and elastic net (3). Regarding the shrinkage properties of adaptive
lasso and SCAD, it is observed that small coefficients tend to be shrunk to zero, whereas large coefficients
are shrunk less than small coefficients. For example, the coefficient of lymph node status (which is the
largest estimated coefficient using MLE) is only shrunk by 16% and 5% for adaptive lasso and SCAD,
respectively, in comparison with 25% for lasso and 32% for ridge.

Bayesian lasso tends to shrink large non-zero coefficients less than small ones due to the heavy tails
of the double exponential prior distribution. So, in comparison with lasso, Bayesian lasso shrinks (hard
shrinkage based on a threshold of one standard deviation from the posterior mean) more coefficients to
zero (5) and shrinks the large coefficients less. For example, the effect of lymph node status is shrunk
by 13% using Bayesian lasso compared with 25% using the classical lasso. SSVS with c = 10 features
a uniform shrinkage pattern, similar to ridge, without shrinking any coefficients to zero. In contrast,
SSVS with c = 30 applies much more aggressive shrinkage; it shrinks five coefficients to zero, whereas
large coefficients are shrunk less than small coefficients, similar to adaptive lasso, SCAD and Bayesian
lasso. For instance, the coefficient of lymph node status is shrunk by 29% when c = 10 but only by 2%
when c = 30.

Having examined and contrasted the shrinkage properties of the methods through this case study, we
shall, in Sections 4 and 5, compare their predictive performance in a variety of scenarios using simulation.
The predictive performance of each method depends on the particular features of the data set in hand,
such as strength of effects, presence of noise predictors and correlation between predictors.

4. Simulations based on the penile cancer data set

4.1. Simulation settings

Using the data from the penile cancer data set, we simulated data with varying EPV. Let Yi and Xi be the
binary outcome and the vector of covariates, respectively, for the ith patient (i = 1,… ,N), where N is
the number of patients in the original data set. Suppressing the indicator for the patient, i, the assumed
regression model is of the form logit(E(Y)) = XT𝜷. We simulate new data sets using the following steps:

(1) Fit a logistic regression model using ridge regression (to avoid extreme values of regression coef-

ficients) to the original data set to obtain 𝜷 =
(
𝛽0, 𝜷

T

1

)T
where 𝛽0 corresponds to the estimate for

the intercept term and 𝜷1 to the estimate of the vector of regression coefficients for the predictors.
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(2) Choose the prevalence (prev) and replace 𝛽0 by the value 𝛽∗0 that makes the average fitted

probability equal to prev. Let 𝜷∗ =
(
𝛽∗0 ,

̂𝜷T
1

)T
.

(3) To create a validation data set, sample M × N (where M is large – we used M = 50) X′s with
replacement from the original data set. Simulate a Yval value for each of the M × N X’s under the
true model: Yval ∼ Bernoulli(logit−1(XT 𝜷∗)). The M×N values of (X,Yval) make up the validation
data set. Repeat this procedure to produce 500 validation data sets.

(4) To create a training data set, choose the EPV and calculate the sample size that corresponds to
the selected EPV given the number of predictors (p) and the prevalence: n = EPV×p

prev
. Sample with

replacement n X′s from the original data set. Generate a Ysim value for each of the n values of X
under the same true model: Ysim ∼ Bernoulli(logit−1(XT 𝜷∗)). The n values of (X,Ysim) make up
the training data set. Repeat this procedure to produce 500 training data sets.

(5) Fit the prediction model (using MLE and penalised methods) to each of the training data sets, apply
the fitted model to the corresponding validation data set to compute the following performance
measures: calibration slope, C-statistic and predictive mean square error (Section 4.3).

4.2. Model-fitting methods

We fit the models using MLE and a selection of frequentist (LSF, RIDGE, LASSO, ENET, ALASSO
and SCAD) and Bayesian (BLASSO and SSVS) shrinkage methods. We also present the performance of
MLE following a stepwise selection procedure using backwards elimination based on the AIC criterion
[39]. For SSVS, the value of c was chosen by cross-validation and a coefficient was set to zero if the
posterior inclusion probability was less than 0.5, as explained in Section 2.2.2 . For the Bayesian lasso,
the hyperprior used for 𝜆2 was a Gamma distribution with shape parameter, a = 1 and rate parameter,
b = 0.01 (as used in [18]), and the decision threshold for hard shrinkage was one standard deviation
around the posterior mean.

4.3. Performance measures

We compare the predictive performance of the various methods in terms of calibration, discrimination and
root predictive mean square error (RPMSE) in two low EPV scenarios (EPV 3 or 5). We use the calibration
slope to measure calibration [40]. To calculate the calibration slope, the binary outcome is regressed
on the prognostic index. The estimated slope in this regression is the calibration slope. A slope of one
suggests perfect calibration. A slope of < 1 suggests overfitting; > 1 suggests underfitting. We measure
discrimination, the ability of the model to discriminate between high- and low-risk patients, using the C-
statistic [41]. If we consider two discordant patients, that is, one who has the event and one who does not,
C-statistic is the probability that the patient who experienced the event has a higher predicted probability.
A value of 0.5 suggests that the model has no discriminatory ability, while a value of 1 suggests that the
model can discriminate perfectly between higher-risk and lower-risk patients. Finally, the RPMSE is the
square root of the average squared difference between the true and estimated predicted probabilities. The
lower the RPMSE, the more accurate predictions the model provides. We present the results using vertical
box-plots, each box-plot summarising a performance measure for each method. For each measure, the
dotted red horizontal line is the median value when MLE is used. For the calibration slope, we also add a
blue horizontal line that corresponds to perfect calibration (1). There was a small number of outliers for
each method, and these are not shown for ease of presentation. Also, in a small number of simulated data
sets (< 2%) when EPV = 3 some of the methods, for example, lasso, shrank all coefficients to zero or
very close to zero, and hence, the calibration slope could not be estimated. Such instances were removed
for the presentation of results for all methods. For each scenario and each performance measure, we state
the maximum Monte Carlo simulation error (for the median) among methods.

4.4. Coverage of credible and confidence intervals for predicted probabilities

We also investigate the coverage properties of credible and confidence intervals for the predicted proba-
bilities. To better assess coverage, for this simulation, we generated 1000 training data sets with varying
EPV (3, 5 and 10) as described in Section 4.1. Each patient’s true risk is obtained using the (known)
true values of the regression coefficients and the observed values of their predictor variables. For each
patient, a 90% credible (or confidence) interval for his true risk is calculated in every simulation, and the
coverage probability for that patient is the proportion of times his true risk is contained in that interval.
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We examine the coverage of these intervals for the true risks of the 128 patients in the original cohort
using the Bayesian lasso, SSVS and frequentist ridge and lasso, and also MLE.

4.5. Bias of the estimates of regression coefficients

In low EPV scenarios, the risk of the event tends to be underestimated for lower-risk patients and to be
overestimated in higher-risk patients when standard MLE is used to fit the model and model performance
is assessed in new data. The main aim of using shrinkage methods is to decrease the prediction error by
shrinking predictions towards the average risk, thus reducing the range of the predicted risks. However,
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Figure 1. Performance measures for the penile cancer data: calibration, discrimination and predictive accuracy for
EPV = 3 (left) or 5 (right). The number on top of each graph is the median number of predictors selected by each
method. The red horizontal line is the median value for MLE. The blue horizontal line is the optimal calibration
slope. EPV, events per variable; N, number of observations; RPMSE, root predictive mean squared error; MLE,
maximum likelihood estimation; BE, backwards elimination; LSF, linear shrinkage factor; ENET, elastic net;
ALASSO, adaptive lasso; BLASSO, Bayesian lasso; SSVS, stochastic search variable selection; MACE, Monte
Carlo simulation error (for the median). The number of data sets (for each method) where the calibration slope
could not be estimated for EPV = 3 was as follows: LSF: 2; Ridge: 1; Lasso: 1; ENET: 2; BLASSO: 3; Alasso:

1; SCAD: 2; SSVS: 0.

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1159–1177

1167



M. PAVLOU ET AL.

this is achieved at the cost of introducing some bias towards the null in the coefficient estimates. There-
fore, we present information about the bias in the coefficient estimates for each method, specifically the
median difference between the true and estimated value of a coefficient (median bias) as a percentage of
the true value of the coefficient.

4.6. Results

The prognostic strength of the risk model for the penile cancer data (128 patients, 25 events, 9 pre-
dictors) was relatively high, with the ‘true’ (standardised) coefficients ranging from −0.01 to 0.89
(true coefficients for predictors were as follows: age: 0.58; depth of invasion: 0.52; Ki67: −0.06; Mcm2:
−0.01, Ki67-g95: 0.17; lymph node status: 0.89; lymphovascular invasion: 0.23; extent of invasion:0.24;
ploidy status: 0.36).

4.6.1. Predictive performance. The predictive performance of the methods is shown in Figure 1. In
terms of calibration, all shrinkage methods offer improvement compared with MLE, while backwards
elimination showed overfitting, very similar to MLE. LSF, lasso, elastic net, adaptive lasso and SSVS
demonstrate good calibration; ridge (and Bayesian lasso, when EPV = 3, to a lesser degree) appears to
underfit the model; SCAD shows signs of overfitting especially for EPV = 5. The penalised methods tend
to discriminate slightly better (except for SCAD and adaptive lasso) and to have lower RPMSE (except
for SCAD when EPV = 5) than MLE, and this is more evident in the lowest EPV scenario. Overall ridge,
elastic net and SSVS performed best. The least accurate shrinkage methods, adaptive lasso and SCAD,
selected the fewest variables (with the exception of Bayesian lasso). SSVS gave results similar to elastic
net, and the most commonly selected value for hyperparameter c when EPV = 3 was c = 10 (43% of the
times), followed by c = 8 (37% of the times).

4.6.2. Coverage of credible and confidence intervals for predicted probabilities. The distribution of cov-
erage probabilities for MLE, ridge, lasso, Bayesian Lasso and SSVS for EPV = 5 is shown in Figure 2(a).
The coverage for MLE was poor, and use of shrinkage methods generally resulted in improved cover-
age. However, as shown in Figure 2(b), the coverage for lasso was above the nominal level for low-risk
patients, while for ridge, the coverage was slightly above the nominal level for low-risk patients and
below the nominal level for very high-risk patients (e.g. > 85th percentile). For Bayesian lasso and SSVS
(Figure 2(c)), the coverage was slightly below the nominal level for patients with very low (e.g. < 15th
percentile) or very high (e.g. > 85th percentile) risk and slightly above the nominal level for patients with
risk in between these values. The coverage of all methods worsened as the EPV dropped and improved
as the EPV increased (results not shown).

Figure 2. (a) Distribution of coverage probabilities of out of sample predictions (MLE, ridge, lasso, Bayesian
lasso and SSVS) for 128 patients for the penile cancer data when EPV = 5. (b),(c): Coverage probability versus
true risks. Dashed lines (for all plots) show the nominal coverage (90%). Dotted vertical lines for plots (b) and
(c) show the 15th/50th/85th percentiles of the true risks. MLE, maximum likelihood estimation; SSVS, stochastic

search variable selection.
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Figure 3. Percentage median bias of the estimates for each of the six coefficients for the penile cancer data with
EPV = 3: frequentist (left) and Bayesian (right) shrinkage methods and MLE. The numbers on top of each graphs
are the true values of the six regression coefficients. MLE, maximum likelihood estimation; ENET, elastic net;
ALASSO, adaptive lasso; BLASSO, Bayesian lasso; SSVS, stochastic search variable selection; SCAD, smoothly

clipped absolute deviation.

4.6.3. Bias considerations. Figure 3 shows the percentage median bias in the coefficient estimates (cal-
culated using 500 simulations) for each of the six largest regression coefficients. Ridge tends to shrink
all coefficients by a similar factor. A similar pattern is observed for SSVS and elastic net in this exam-
ple. The amount of bias introduced by lasso depends on the true effect sizes with larger relative bias for
smaller effects. This differential bias is even more pronounced for adaptive Lasso, SCAD and Bayesian
lasso, which shrink the smallest effects to zero for most simulated data sets, while the bias for the largest
effects is relatively small. While unbiased estimation of coefficients is important when the aim is to inves-
tigate associations, bias is considered to be a less important issue for risk prediction studies where the
predictive performance of the model is of main interest.

5. Further simulations

In this section, we perform additional simulations for scenarios with noise and correlated predictors to
aid understanding of the findings from the simulations based on real data. We also explore the sensitivity
of our simulation results to the selection of tuning parameters for the frequentist methods by using one
single cross-validation versus using repeated cross-validations.

5.1. Noise and correlated predictors

We used artificial data sets where both predictors and outcomes were generated to match a hypothetical
scenario. The advantage of this simulation setting over simulations based on real data is that we have full
control over the features of the data and specifically the distribution of covariates, their strength and the
correlations between them. We explore two main scenarios: (i) the presence of noise predictors and (ii)
the presence of correlated predictors, both of which might affect the performance of the methods. The
prevalence of the event for all simulation scenarios in this section was set to either 15% or 20%.

For (i), we consider two special cases. We first consider a sparse scenario and investigate how the
performance of methods that perform variable selection compares with those that do not. Second, we
consider a special case motivated by a situation where researchers have to consider a large number of
potential predictors, some of which are known from the literature to be predictive of the outcome, but
others may not. It is of interest to explore how the predictive performance of MLE deteriorates as EPV
drops by adding noise predictors to the set of true predictors and how much of the lost predictive accuracy
can be recovered by the use of penalised methods. For (ii), we explore whether those methods designed
to handle correlated predictors (e.g. ridge and elastic net) have better predictive performance than the
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others (e.g. lasso, which tends to only keep some predictors from a set of correlated predictors) when
predictors are correlated. We now present a summary of the findings for each scenario; detailed results
can be found in the Supporting Information material (Section S3).

5.1.1. Noise predictors – model sparsity. We generated seven independent and normally distributed
covariates. A sparse design was induced by specifying a single true predictor and six noise predictors
with 𝜷1 = (1.3, 0, 0, 0, 0, 0, 0). The full results are presented in Figure S1 in the Supporting Informa-
tion. In terms of calibration, all methods offered improvement compared with MLE, which produced
an overfitted model (median calibration slope was 0.70 for EPV = 3). Bayesian lasso, lasso and ridge
(to a lesser degree) produced underfitted models when EPV = 3. When EPV = 5, LSF, adaptive lasso,
SCAD and SSVS produced slightly overfitted models. Regarding discrimination and RPMSE, methods
that perform variable selection offered a noticeable improvement compared with MLE, ridge and LSF.
Backwards elimination was also better than MLE. The median C-statistic was 0.768 for MLE and ridge
when EPV = 3, 0.781 for backwards elimination, 0.788 for elastic net and between 0.788 and 0.794 for
other methods. The pattern was similar for RPMSE. For MLE, the RPMSE was 0.0909, compared with
0.0745 for ridge, while the rest of the methods (with the exception of LSF and backwards elimination)
were substantially more accurate, with RPMSE ranging from 0.0524 (elastic net) to 0.0237 (SSVS) for
EPV = 3. Among the methods that perform variable selection, elastic net selected the most variables
and SSVS and BLASSO the fewest (median number of selected variables 3, 1 and 1, respectively, for
EPV = 3). All methods that perform variable selection selected the true predictor in all simulations, while
SSVS and Bayesian lasso had the lowest false inclusion rate (Table S3 in the Supporting Information).
In general, more shrinkage was applied by SSVS compared with the simulation without noise predictors
(in Section 4), and the most commonly selected value of c was 30. Overall, the methods that perform
aggressive variable selection, that is, SCAD, adaptive lasso, Bayesian lasso and SSVS, performed best.

5.1.2. Noise predictors – addition of noise predictors. Fifteen predictors were independently generated
from the standard normal distribution. Five of them were ‘true’ predictors, and the vector of their true
coefficients was 𝜷1 = (1, 0.8, 0.6, 0.4, 0.2). The rest were noise predictors. We firstly considered a model
with the five true predictors only and a model with the 10 noise predictors added. The EPV for the model
with five true predictors was 6; it dropped to 2 when 10 noise predictors were added. The full results are
presented in Figure S2 in the Supporting Information material. As expected, the amount of overfitting
by MLE increased with the addition of noise predictors, while most shrinkage methods had improved
calibration. The models derived by backwards elimination were overfitted for both before and after the
addition of the 10 of noise predictors. LSF, adaptive lasso and especially SCAD produced an overfitted
model for the simulation with true predictors only. When the 10 noise predictors were added, ridge, lasso
and Bayesian lasso produced underfitted models. All shrinkage methods had lower RPMSE than MLE.
The improvements in discrimination were relatively small: for 10 noise predictors, the median C-statistic
was 0.767 for MLE, while among the penalised methods, adaptive lasso achieved the highest C-statistic
(0.780). In general, shrinkage methods that perform variable selection had slightly better performance
to ridge and LSF but with fewer number of predictors retained (median number of predictors was 10 for
elastic net, 6 for SCAD, adaptive lasso and for Bayesian lasso, and in between for the other methods).
For SSVS, the most commonly selected value for c when there were no noise predictors was 15. After
the addition of noise predictors, more shrinkage was applied by SSVS, and the most common choice of
c was again 30.

5.1.3. Correlated predictors. Seven continuous predictors were generated from a zero-mean multivariate
normal distribution. The first four predictors were highly correlated (pairwise correlation = 0.8), while
the rest were independent of each other and of the first four predictors. The vector of true coefficients
was 𝜷1 = (0.8, 0.6, 0.4, 0.4, 0.2, 0.2,−0.2). All methods offered improvement compared with MLE (the
full results are presented in Figure S3 in the Supporting Information material). Apart from SCAD, which
slightly overfitted the model (with a median calibration slope of 0.89 for EPV = 3, compared with 0.81 of
MLE), all shrinkage methods demonstrated good calibration, with signs of underfitting for ridge, lasso,
elastic net and Bayesian lasso. For SSVS, the most commonly chosen value of c was 8. The predictive
performance of lasso, Bayesian lasso, adaptive lasso and SCAD was generally worse than that of ridge
and SSVS in terms of discrimination and RPMSE. The high correlation between predictors can cause
these methods (lasso, Bayesian lasso, adaptive lasso and SCAD) to select at random a subset of the
four correlated predictors, and this is likely to be at least part of the reason for the worse predictive
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accuracy of these methods. The median C-statistic was 0.862 for MLE, 0.868 for lasso and 0.872 for
ridge, when EPV = 3. Similarly, the RPMSE was 0.094 for MLE, 0.075 for lasso and 0.065 for ridge. The
performance of elastic net and SSVS was very close to that of ridge, while SCAD and adaptive lasso were
worse than lasso. We highlight the fact that when EPV = 3, lasso selected all four correlated predictors
in only 30% of the simulated data sets, in comparison with 64% for elastic net which tended to select
the correlated predictors as a group. When the pairwise correlation was changed to 0, the corresponding
proportion was 68% for lasso and its predictive performance became very close to that of ridge (results
not shown).

5.2. Selection of the tuning parameter

The selection of the tuning parameters for ridge, lasso, elastic net, adaptive lasso and SCAD is most often
made using k-fold cross-validation. This makes the selection of the tuning parameters non-deterministic,
that is, for a different fold assignment to the observations, a different tuning parameter may be selected
(unless ‘leave-one-out’ cross-validation, i.e. k = n, is used). In principle, using only a single k-fold cross-
validation may affect the stability of the results in that a different k-fold split might yield a different value
for the tuning parameter. One way to overcome this issue is to perform k-fold cross-validations many
times, say 50, for a given data set, thus obtaining 50 values for the tuning parameter, and then use the
value that corresponds to a particular percentile, 𝜃, of those 50 values. We term this approach ‘repeated
cross-validations’. Roberts and Nowak [42] studied the instability of lasso in terms of variable selection
and suggested that choosing a large value of 𝜃 (they argue that 𝜃 = 0.95 is appropriate in most scenarios)
considerably reduces the variable selection instability and model selection error. They also found that it
may improve predictive performance by protecting against extremely large prediction errors.

In the simulation studies reported in previous sections, we used 10-fold cross-validation (non-
repeated), which is the default option in most packages, and in this section, we further investigate the
effect of using a single cross-validation in a sub-study for the penile cancer example of Section 4 and the
sparse scenario of Section 5. In particular, we compared the results when using a single cross-validation
versus repeated cross-validation. We considered two possible percentiles: 𝜃 = 0.5 and 𝜃 = 0.95. The
results for the single cross-validation method and the repeated cross-validation method with 𝜃 = 0.5
were very similar (Figures S4 and S5 in the Supporting Information material), suggesting that use of
single cross-validation did not affect our conclusions. However, use of the repeated cross-validation
method with 𝜃 = 0.95 resulted in underfitted models. This is because the use of 𝜃 = 0.95 tends to
select a larger value for the shrinkage parameter than does the use of 𝜃 = 0.5. This causes more aggres-
sive shrinkage, which then leads to more underfitting. When analysing a real data set, we suggest using
repeated cross-validations with 𝜃 = 0.5, as we do in the next section.

6. Data illustration

Here, we demonstrate the application of shrinkage methods to a real data example with a low-outcome
prevalence. The aim is to derive a risk model for estimating the probability of thromboembolism in
patients with hypertrophic cardiomyopathy. The event of interest was a thromboembolic event within
5 years of first evaluation. Predictors included age, sex, atrial fibrillation at baseline (‘af’), NYHA class
of disease severity (three categories), history of prior thromboembolic events (‘stroke history’) or history
of diabetes, hypertension or vascular disease (all binary) and also left atrial diameter (‘la diameter’), peak
left ventricular outflow tract gradient (‘peak lvot’), maximum left ventricular wall thickness(‘mwt’) and
its square term, fractional shortening(‘fs’) and left ventricular ejection fraction (‘lvef’) (all continuous).

We used the various methods to develop logistic regression prediction models from data on 2082
patients (75 events). There were 15 regression coefficients and so the EPV was only 5. The models were
externally validated using data from different centres (2739 patients, 97 events). When using a frequen-
tist shrinkage method, we selected the tuning parameter using repeated cross-validations (as described
in Section 5.2) with 𝜃 = 0.5. We compared the calibration and discrimination of the fitted models
using the calibration slope and C-statistic, as described earlier. For overall predictive accuracy, we used
the Brier score defined as the average squared difference between the estimated probability and the
observed outcome.

As in our simulation studies, backwards elimination, adaptive lasso, SCAD and Bayesian lasso selected
the fewest predictors (eight), while lasso and SSVS(with c = 5 chosen using cross-validation, for 𝛿 = 0.1)
selected 12 and 13 predictors, respectively (Table II). Elastic net retained all 15 predictors. All methods
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Table II. Modelling the probability of a thromboembolic event.

MLE BE RIDGE LASSO ENET ALASSO SCAD BLASSO SSVS

Intercept −3.29 −3.27 −3.26 −3.26 −3.27 −3.36 −3.31 −3.23 −3.25
age 0.26 0.27 0.15 0.13 0.17 0.05 0.10 0.15 0.15
la diameter 0.36 0.35 0.24 0.30 0.26 0.43 0.39 0.25 0.31
mwt 0.49 0.47 0.19 0.21 0.23 0.07 0.21 0.21 0.25
mwt2 −0.34 −0.32 −0.15 −0.16 −0.18 −0.07 −0.15 −0.18 −0.21
peak lvot −0.10 0.00 −0.03 0.00 −0.04 0.00 0.00 0.00 0.00
fs −0.13 0.00 −0.05 0.00 −0.07 0.00 0.00 0.00 −0.05
lvef −0.16 0.00 −0.07 −0.01 −0.08 0.00 0.00 0.00 −0.08
af 0.14 0.16 0.13 0.11 0.14 0.07 0.12 0.13 0.10
stroke history 0.22 0.22 0.17 0.17 0.18 0.19 0.20 0.17 0.16
female −0.18 −0.20 −0.10 −0.09 −0.11 −0.08 −0.11 −0.10 −0.10
NYHA class II 0.13 0.00 0.09 0.02 0.10 0.00 0.00 0.00 0.07
NYHA class III/IV 0.10 0.00 0.08 0.01 0.09 0.00 0.00 0.00 0.05
vascular disease −0.07 0.00 −0.03 0.00 −0.03 0.00 0.00 0.00 0.00
hypertension −0.20 −0.22 −0.10 −0.06 −0.12 −0.01 −0.05 −0.11 −0.11
diabetes −0.12 0.00 −0.06 −0.01 −0.07 0.00 0.00 0.00 −0.07

Number of
predictors retained 15 8 15 12 15 8 8 8 13

Standardised coefficients of logistic regression model estimated by MLE, BE and the shrinkage methods using a sample
of 2082 patients and 75 events (EPV = 5). MLE, maximum likelihood estimation; BE, backwards elimination; LSF,
linear shrinkage factor; ENET, elastic net; ALASSO, adaptive lasso; BLASSO, Bayesian lasso; SSVS, stochastic search
variable selection; SCAD, smoothly clipped absolute deviation.

Table III. External validation of the models for the probability of a thromboembolic event.

Performance measure Calibration slope (s.e.) C-statistic (s.e.) Brier score

MLE 0.78 (0.12) 0.704 (0.025) 0.03396
BE 0.85 (0.13) 0.703 (0.025) 0.03381
RIDGE 1.27 (0.18) 0.724 (0.024) 0.03357
LASSO 1.23 (0.17) 0.718 (0.024) 0.03359
ENET 1.22 (0.17) 0.723 (0.024) 0.03358
ALASSO 1.07 (0.16) 0.715 (0.026) 0.03361
SCAD 1.07 (0.16) 0.697 (0.026) 0.03370
BLASSO 1.26 (0.17) 0.723 (0.024) 0.03360
SSVS 1.19 (0.17) 0.718 (0.024) 0.03359

Performance measures were evaluated on a validation data set with 2739 patients and 97 events.
MLE, maximum likelihood estimation; BE, backwards elimination; LSF, linear shrinkage factor;
ENET, elastic net; ALASSO, adaptive lasso; BLASSO, Bayesian lasso; SSVS, stochastic search
variable selection; SCAD, smoothly clipped absolute deviation.

improved calibration (in the validation data) compared with MLE; ridge, lasso, elastic net, Bayesian lasso
and SSVS underfitted the model, but this did not affect the other performance measures (Table III). With
the exception of SCAD, all shrinkage methods improved discrimination slightly, with ridge achieving the
highest C-statistic of 0.724, in comparison with 0.704 for MLE. All shrinkage methods had lower Brier
scores than MLE, with ridge, lasso, elastic net and SSVS achieving the lowest. We also calculated the
performance measures for the models produced from each of the 50 10-fold cross-validations for each
method, to quantify the variability resulting from the selection of tuning parameters via non-repeated
cross-validation. Some variability was observed in the calibration slope, C-statistic and Brier score. For
ridge regression, for example, the interquartile range across the 50 non-repeated 10-fold cross-validations
was [1.24, 1.35] for the calibration slope and [0.724, 0.726] for the C-statistic. The variability was similar
for the other methods. To visually assess the calibration of the model, we used the ‘calibration plot’ in
Figure 4. It shows (for the validation data set) the observed proportion of patients with the event and
the average predicted risks in four clinically meaningful groups of patients (defined by the predicted
risks from MLE, which are more widely dispersed that the predicted risks of the other methods). MLE
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Figure 4. Calibration plot for the thromboembolism data. Number of patients are 983, 946, 574 and 236 for risk
groups 1 to 4, respectively. MLE, maximum likelihood estimation; SSVS, stochastic search variable selection.

overestimates the risk of thromboembolism for the highest risk-group, while ridge and SSVS, which
were among the best performing methods, satisfactorily estimate the average risk in each of the four
risk groups.

7. Discussion

The application of penalised methods in low-dimensional settings, although important, has been limited.
In this paper, we investigated the use of penalised methods to alleviate the problem of model overfitting
in low-dimensional data with few events in the context of risk prediction. In particular, we focused on
scenarios with EPV less than 10, where the danger of overfitting is particularly pronounced.

We examined three main categories of shrinkage methods. The first category includes methods that
shrink the coefficients but do not perform variable selection (LSF and ridge). In our simulation studies,
ridge produced slightly underfitted models in some cases but generally performed better than LSF in terms
of discrimination and predictive mean square error. The second category includes frequentist penalised
methods that also perform variable selection (lasso, elastic net, adaptive lasso and SCAD). Lasso and
elastic net performed well in most scenarios. Elastic net was found to select more variables than lasso
and was superior to lasso in scenarios with correlated predictors. Adaptive lasso and SCAD selected
fewer variables than lasso and were better than lasso only in scenarios with many noise predictors. One
motivation for considering the third category, Bayesian approaches, is to apply shrinkage and perform
variable selection while also obtaining measures of uncertainty for the coefficients and predicted proba-
bilities. When the objective is to obtain a simple model with few predictors, assessment of the uncertainty
around variable selection decisions can be based on the posterior distribution of the coefficients (or the
posterior inclusion probabilities). We considered Bayesian lasso and SSVS. Bayesian lasso was best
suited to scenarios with noise predictors, whereas SSVS performed well in all scenarios.

Table IV summarises our recommendations regarding the choice of method(s) in each of the scenarios
considered. For each scenario, we highlight the methods that had the best predictive performance (denoted
by ✓✓), the methods that performed better than MLE (denoted by ✓) and methods that should be avoided
(denoted by ×).

7.1. High-dimensional settings

Penalised regression methods are widely used in high-dimensional settings, often with highly sparse
underlying models. For example, in genetic association studies, very few genetic markers are expected
to be associated with the phenotype of interest. In such cases, sparse regression techniques such as lasso,
adaptive lasso and SCAD can identify a small subset of relevant predictors and can provide good predic-
tive accuracy. Breheny and Huang [27] compared SCAD with lasso in a gene expression and a genetic
association study and noted that SCAD allows coefficients to take on large values much more easily than

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1159–1177
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Table IV. Recommended methods according to their predictive performance in data sets
with few events.

Scenario

Noise predictors

Method No noise predictors Non-sparse Sparse Correlated predictors

LSF ✓ ✓ × ×
BE × × × ×
RIDGE ✓✓ ✓ × ✓✓
LASSO × ✓✓ ✓ ✓
ENET ✓✓ ✓✓ ✓ ✓✓
ALASSO × ✓a ✓✓ ×
SCAD × ✓a ✓✓ ×
BLASSOb ✓ ✓✓ ✓ ✓
SSVSc ✓✓ ✓✓ ✓✓ ✓✓

✓✓Performed best in simulations.
✓Performed well but was not the best method in simulations.
×Not recommended for the particular scenario.
aTends to overfit the model in the presence of weak effects.
bSensitive to the threshold selection for hard shrinkage.
cWhen the spike and slab variances are chosen appropriately using cross-validation.
MLE, maximum likelihood estimation; BE, backwards elimination; LSF, linear shrinkage factor;
ENET, elastic net; ALASSO, adaptive lasso; BLASSO, Bayesian lasso; SSVS, stochastic search
variable selection; SCAD, smoothly clipped absolute deviation.

lasso. As a result, SCAD outperforms lasso when strong predictors (i.e. predictors with large coefficients)
are present in the underlying true model. They also found that shrinkage applied by lasso is beneficial
when predictors are weak; in such cases, SCAD tends to overfit the noisy data. Huang et al [43] explored
the use of adaptive lasso in microarray data and linear regression. They found that adaptive lasso had
lower predictive mean square error than lasso, except in cases where true predictors were correlated with
the rest. Benner et al. [26] used simulated microarray data and found that SCAD and adaptive lasso had
the best predictive accuracy in highly sparse scenarios, while in moderately sparse scenarios, elastic net
and lasso were better. In sparse scenarios, ridge performed poorly, whereas it performed well in one
non-sparse low-dimensional setting considered. Austin et al. [44] explored penalised methods and risk
prediction in genome-wide association studies. They found that SCAD and lasso were best for sparse
models, while elastic net and ridge were suitable for non-sparse models, which is in agreement with
our results.

7.2. Alternative approaches

We have compared a wide range of methods, but alternative approaches also exist. For example, Firth’s
bias correction method [45] uses a different type of penalisation and deals well with problems involving
separation [46]. In the scenarios we studied, it showed some improvement compared with MLE in terms
of prediction, but it was inferior to the other shrinkage methods considered, showing signs of overfitting
(results not shown). In the Bayesian framework, alternative methodologies include the ‘model space’
approach, where the space of all possible models is considered and candidate models are suggested by
the posterior model probabilities. Fast and efficient exploration of model and parameter space can be
implemented using special samplers such as reversible jump MCMC. Parameter estimation and/or pre-
diction can proceed by averaging over all or highly probable models. Also, techniques from machine
learning, such as random forests, neural networks and support vector machines, have been used recently
for prediction with medical data and have the potential to outperform standard regression methods in
some cases, although recent studies showed that those methods require large EPV to fully realise their
potential [47], and they may overfit if not carefully applied. Also, the results obtained from some of
these non-regression-based approaches, for example, neural networks and support vector machines, may
not be as intuitive and interpretable, posing concerns regarding reproducibility and transparency of the
results [48].
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7.3. Conclusion

In conclusion, it is important to consider penalised methods when developing prediction models for low-
dimensional data with few events. They can improve calibration and predictive accuracy compared with
MLE, although improvement in discrimination was modest in the scenarios considered. One reason for
this small improvement in discrimination is that, as penalised methods tend to shrink the predicted prob-
abilities towards the average compared with MLE, the ordering of the predicted probabilities for patients
with and without the event tends to remain unchanged (after shrinkage) for most patient pairs. Further
research could consider alternative approaches to increase discrimination via better usage of patients with
the event (e.g. super-sampling patients with the event [49]).

Backwards elimination, which is often employed by analysts to reduce the number of predictors and
ostensibly meet the EPV recommendations, should be avoided in data sets with few events. We recom-
mend using ridge regression or SSVS when no variable selection is required. When variable selection
is required and no high correlations are observed between predictors, we suggest using lasso, while if
there are high correlations, elastic net is the preferred option (this tends to select more variables than
lasso). Adaptive lasso, SCAD and Bayesian lasso are better suited to scenarios with many noise predic-
tors. In other cases, they can still be useful in identifying a set of strong predictors, but this set will tend
to have reduced predictive accuracy compared with the models obtained by ridge and lasso. If a concise
model comprising the strongest predictors is required and the analyst is prepared to sacrifice some pre-
dictive accuracy, then adaptive lasso, SCAD and also Bayesian lasso could be considered. SSVS can be
applied in scenarios with and without noise predictors but fitting will be considerably slower than for
the frequentist methods, especially if the hyperparameters are selected using cross-validation. In general,
Bayesian approaches are worth considering alongside the frequentist approaches due to their appealing
features: variable selection based on posterior distributions; availability of credible intervals for pre-
dicted probabilities; ability to incorporate external information (e.g. from meta-analysis) if available;
and straightforward extension to the clustered-data setting (all of which are topics for further research).
Confidence/credible intervals for predicted probabilities from shrinkage methods had substantially better
coverage than MLE, although there was evidence of under-coverage or over-coverage for some patients.
Overall, no method outperformed the others in all scenarios. The choice of method should be made based
on the features of the particular data set in hand. In addition, if one requires a simpler model, then a
method that allows variable selection might be preferred.
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