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ABSTRACT

Peptide–protein interactions are among the most pre-
valent and important interactions in the cell, but a
large fraction of those interactions lack detailed str-
uctural characterization. The Rosetta FlexPepDock
web server (http://flexpepdock.furmanlab.cs.huji
.ac.il/) provides an interface to a high-resolution
peptide docking (refinement) protocol for the model-
ing of peptide–protein complexes, implemented
within the Rosetta framework. Given a protein recep-
tor structure and an approximate, possibly inaccur-
ate model of the peptide within the receptor binding
site, the FlexPepDock server refines the peptide to
high resolution, allowing full flexibility to the peptide
backbone and to all side chains. This protocol was
extensively tested and benchmarked on a wide array
of non-redundant peptide–protein complexes, and
was proven effective when applied to peptide start-
ing conformations within 5.5 Å backbone root mean
square deviation from the native conformation.
FlexPepDock has been applied to several systems
that are mediated and regulated by peptide–protein
interactions. This easy to use and general web ser-
ver interface allows non-expert users to accurately
model their specific peptide–protein interaction of
interest.

INTRODUCTION

Protein–protein interactions facilitate most cellular pro-
cesses. It has lately become apparent that a significant
fraction of these interactions are mediated by peptide–
protein interactions, which involve the binding of a
linear, unfolded peptide stretch onto a globular protein
receptor (1–3). Peptide-mediated interactions indeed play
key roles in major cellular processes, predominantly in

signaling and regulatory networks that require short-lived
signals (4), and also in cell localization, protein degrad-
ation and immune response (3,4). However, despite their
importance and estimated abundance, peptide-protein
complexes are underrepresented among solved structures
(5,6). Therefore, protocols that can provide accurate struc-
tural models of peptide–protein interactions represent an
essential tool for the molecular understanding of the
cellular network of interactions (7). These models can
then be used as ideal starting points for targeted compu-
tational and experimental modulation of interactions
(8,9). For many real-life peptide docking problems,
coarse-grain models can be often obtained from
complexes with alternative peptides, unbound structures
or homology models where existing structures provide ap-
proximate structural information about the receptor and
the peptide or the location of the binding site [e.g. peptides
that bind to MHC, SH3, WW or PDZ domains (10–13)].
Rosetta FlexPepDock (14) is a high-resolution protocol

for the refinement of peptide-protein complex structures
that is implemented in the Rosetta modeling suite frame-
work (15). Starting from a coarse model of the interaction,
FlexPepDock performs a Monte Carlo-Minimization-
based approach to refine all the peptide’s degrees of
freedom (rigid body orientation, backbone and side
chain flexibility) as well as the protein receptor side
chains conformations. The Rosetta FlexPepDock web
server described here provides a simple interface for the
usage of this protocol, and by this aims to increase the
accessibility of structural models of peptide–protein inter-
actions to a broad range of scientists.
While a plethora of web servers is available for the

docking of a pair of globular proteins [e.g. RosettaDock
(16), HADDOCK (17), PatchDock (18), ClusPro (19) and
more; see CAPRI (20)], these are not intended for the
docking of peptides. In particular, they do not consider
the flexibility of the protein backbone during the docking
process, and are thus not suitable for the docking of
flexible peptides. Web servers are also available for
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small-molecule docking [e.g. Autodock (21), DOCK (22),
PatchDock (18), ParDock (23), MEDdock (24) and
others]. These servers, however, are suitable for molecules
with a limited number of rotatable bonds only, and there-
fore not applicable to peptides, which typically contain
many more internal degrees of freedom than small mol-
ecules (14,25). Other servers might identify the rough
orientation of the peptide (and can serve as a complemen-
tary, preliminary step to FlexPepDock), but do not actu-
ally model the peptide–protein complex. These include
CASTp (26), which aims at detecting pockets on protein
surfaces [we previously showed that this feature correlates
with peptide binding sites (5)], and PepSite (27), which
predicts peptide binding sites and provides a coarse pre-
diction of specific peptide residue locations. Finally, other
software that models peptide–protein complexes such as
DynaDock (28), or system-specific software for modeling,
e.g. PDZ–peptide interactions (29) or MHC–peptide inter-
actions (30), are to our knowledge not accessible to the
public in the form of a web server. Consequently, the
Rosetta FlexPepDock web server presented here is cur-
rently the only server that allows for high-resolution
modeling of peptide–protein interactions.
The performance of Rosetta FlexPepDock has been ex-

tensively tested against a large set of perturbed peptide–
protein complexes and an effective range of sampling was
defined (14). Table 1 summarizes the performance of
FlexPepDock over a bound docking benchmark that
covers a wide range of increasingly divergent starting
peptide conformations. More analyses of its performance
can be found in Raveh et al. (14). For peptides with initial
backbone (bb) root mean square deviation (RMSD) of up
to 5.5 Å, FlexPepDock is able to create near-native models
(peptide bb-RMSD <2 Å) in 91% of the cases for the
bound receptor, and rank them as one of the top five
models in 78%. Moreover, the side chains of key residues

in binding motifs are modeled particularly well, typically
within 1 Å of their native conformations (14). In the
challenging task of unbound docking, near-native
models were sampled in 85% of the cases and ranked cor-
rectly in 59% (for starting structures within 5.5 Å
bb-RMSD from the native conformation).

In cases where no information is available about the
conformation of the peptide backbone, docking can be
started from an extended peptide conformation. In a
benchmark in which the peptide was docked starting
from an ideal extended backbone conformation (±135�

for all j/c angles) based on a single anchor residue,
near-native solutions could be sampled in 66% of the 71
non-helical complexes (31% <1 Å from native), and
ranked among the top five solutions in 49% of the cases
(24% for <1 Å from native).

Rosetta FlexPepDock was tested on peptides of length
5–15 amino acids, and performance shows little to no
dependency on the peptide length (see Supplementary
Table S1). However, we have also repeatedly applied it
successfully to longer peptides.

DESCRIPTION OF WEB SERVER

The main input for the Rosetta FlexPepDock web server is
a PDB (31) file of the estimated complex between the
receptor (first chain) and the peptide (second chain). The
server will dock the peptide starting from this initial con-
formation. If the native conformation of the peptide lies
within the effective range of the protocol (see above), it
will most probably produce high-resolution models for
this interaction.

Using the default options, the server will perform 100
simulations in full-atom mode and 100 simulations that
include a preceding low-resolution centroid-based
optimization protocol [see Raveh et al. (14) for more
details about the protocol]. It will then rank the total of
200 created models by their Rosetta energy score and
provide the user with the top 10 predicted models for
this interaction, as well as their score and bb-RMSD
from the starting conformation. In addition, a plot
showing score versus RMSD for each of the created 200
models provides information about overall sampling
(Figure 1B).

ADVANCED OPTIONS

For more advanced runs, users are able to specify:

. A reference PDB: the user can upload a reference PDB
of the peptide–protein interaction. If so, RMSD values
of the models will be calculated to the reference peptide
conformation found in this file, rather than to the
starting conformation. This is useful if for example a
structure of a similar interaction is available.

. A constraints file: the user can upload a file that spe-
cifies distance constraints between different atoms in
the system. This allows the users to incorporate previ-
ous experimental knowledge and their intuitions into
the simulations. For instance, the distance between a
catalytic residue in the receptor and a modified residue

Table 1. FlexPepDock performance as a function of the starting

peptide bb-RMSD

Start
RMSD
(Å)b

Sub-angstrom (<1 Å)a Near-native (<2 Å)a Cases
(n)

Rank 1c

(%)
Top 10c

(%)
All 200c

(%)
Rank 1
(%)

Top 10
(%)

All 200
(%)

0–0.5 61.6 93.0 100.0 93.0 98.8 100.0 86
0.5–1.5 61.6 91.3 97.1 94.2 97.1 99.3 138
1.5–2.5 47.6 77.2 91.8 82.3 93.9 99.7 294
2.5–3.5 36.7 61.5 77.9 67.9 86.9 96.7 390
3.5–4.5 23.4 42.6 54.4 49.8 72.4 85.7 406
4.5–5.5 22.5 41.5 52.2 47.8 65.8 77.8 383
5.5–6.5 17.6 28.7 37.5 30.7 48.3 63.1 352
6.5–7.5 13.6 20.4 27.5 25.5 37.4 48.2 353
7.5–8.5 10.1 17.5 22.4 19.9 28.3 38.8 286
8.5–9.5 5.8 9.7 15.1 14.7 23.3 34.9 258
>9.5 4.7 7.2 10.0 10.3 14.8 21.1 622

aWe measure the performance by two success criteria—a model is con-
sidered successful if the peptide interface bb-RMSD to native is <1 Å
(sub-angstrom) or <2 Å (near-native).
bStarting structures were binned according to the starting peptide con-
formation bb-RMSD. In this case, the bound receptor was used for
docking.
cPerformance when considering just the Top 1 ranking model by
energy, Top 10 ranking models, or the entire sample of 200 models.
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in the peptide, or the distances derived from cross-
linking experiments can easily be reinforced with this
setup. Another case in which constraints may be useful
is if the user wants to fix certain interactions that are
present in the starting model.

. The amount of models created with or without the
low-resolution preoptimization stage. In cases of high
confidence in the initial peptide placement (e.g. when
only one point mutation is introduced into an existing
structure), the user might want to avoid the larger
range sampling of this low-resolution stage and focus
the sampling on a closer range. When the initial place-
ment is less confident (e.g. point mutations in the
protein indicate a putative binding site, but the exact
orientation of the peptide is not known), more sampl-
ing with this low-resolution stage might increase the
sampling range and allow the identification of the
correct conformation.

. Reported scoring terms in the output file: the user can
specify which specific Rosetta scoring terms will be re-
ported for the top 10 models, e.g. Lennard-Jones full
atom attractive and repulsive terms, the Lazaridis-
Karplus solvation term (32), hydrogen bonding score
(33) and others.

. Modified amino acids: currently, the server supports
the docking of peptides containing modified amino
acids (such as phosphorylation, acetylation, etc.) only
in high-resolution mode (i.e. without low-resolution
preoptimization). When submitting such complexes,
the user should consult the FAQ page for exact format
of the modified residue. Other non-natural amino that
are unrecognized by the server will be ignored.

SUMMARY

We describe here an easy-to-use web server interface to the
Rosetta FlexPepDock protocol for the high-resolution
modeling of peptide–protein interactions. FlexPepDock
has recently been used by us to successfully address several
‘real world’ modeling tasks (34–37) and we expect that
increasing its usability through this web server will open
the door for a wide range of new systems and applications.
We have recently extended the FlexPepDock protocol

and introduced ‘FlexPepDock ab-initio’, a powerful proto-
col for simultaneous de novo folding and docking of
peptides at a known binding site that does not require
an initial peptide backbone conformation. FlexPepDock
ab initio performed well on a benchmark of peptide–
protein interactions (38). This protocol is however
computationally expensive and therefore not yet available
on the web server. It can be downloaded as part of the
next Rosetta release.

METHODS

Overview of the protocol

Rosetta FlexPepDock is extensively described in Raveh
et al. (14). We provide here a short overview of the proto-
col. The first step in our protocol involves the ‘pre-
packing’ of the input structure, to remove internal clashes:
side chain conformations are optimized by determining
the best rotamer combination for both the protein and
the peptide separately. In order to create a single model,
we conduct 10 outer cycles of optimization starting with a
reduced repulsive van der Waals term and increased at-
tractive van der Waals term. During refinement, the repul-
sive and attractive terms are gradually ramped back
towards their original values so that in the last cycle the
energy function corresponds to the standard Rosetta
score. Within each outer cycle, we first optimize the rigid
body orientation between the protein and the peptide, and
then optimize the peptide backbone for the new orienta-
tion, both using Monte Carlo search with energy mini-
mization. Side chain rotamers are recalculated for the
interface on-the fly.

Pre-optimization in low-resolution

We provide an optional fast, low-resolution optimization
step prior to the full atom optimization. In this step, side
chains are represented as spherical centroids of variable
size. Similar to the high-resolution protocol, the rigid body
and peptide backbone degrees of freedom are optimized

Figure 1. Results provided for an example peptide docking run.
(A) Graphical representation of the top 10 models (superimposed), as
well as more detailed figures of the top 5 models (second row). (B) Plot
of RMSD (x-axis) vs score (y-axis) of all models created by the
simulation run. Bottom panel: The top 10 models (PDB format
coordinates), as well as a score file can be downloaded via the
provided links. This example is based on a 4.9A bb-RMSD starting
conformation and is taken from line 6 in Table 1.
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alternately for several cycles. In this low-resolution repre-
sentation, sampling range is usually increased.

Rosetta infrastructure

The server is based on Rosetta Release version 3.2 and
implements the following command line:

FlexPepDocking.release -database minirosetta_database
-s start.pdb -native ref.pdb -rbMCM -torsionsMCM
-ex1 -ex2aro -use_input_sc –unboundrot start.pdb
-scorefile score.sc -ignore_unrecognized_res -nstruct
200 [-lowres_preoptimize]

Queue page

The life cycle of a modeling job submitted by the user goes
through the following stages: (i) queued: waiting to be
processed by the server; (ii) pre-packing: processing of
the input file and repacking of the side chains in each
monomer (protein and peptide) to remove internal
clashes that are not related to intermolecular interactions;
(iii) FlexPepDocking: the actual production run—creation
of the requested number of models by high-resolution
refinement. This stage consumes the major part of the
running time; (iv) processing results: creation of visual
representation of results; (v) writing results: creation of
the results page; (vi) completed: job has ended successfully
or, alternatively, if job failed, the user will receive an error
description by e-mail (and a corresponding message in the
results page).

Documentation

In addition to an overview page that briefly describes
the underlying protocol, and provides information
about prior benchmarking results (http://flexpepdock
.furmanlab.cs.huji.ac.il/overview.php), users can also
read more on the Usage and Frequently Asked
Questions (FAQ) page (http://flexpepdock.furmanlab.cs
.huji.ac.il/usage.php), which provides details about the
input and output of the server, as well as gives answers
to the most common anticipated problems. Finally, results
of a demo run are also available (http://flexpepdock
.furmanlab.cs.huji.ac.il/demo/index.php).

Registration

This web site is free and open to all users and there is no
login requirement. However, users can supply an e-mail
address (highly recommended), which allows them to
receive a notification via e-mail after a simulation
finishes, as well as a convenient link to the results page.

System architecture

The server runs on an AMD Sun Cluster of 40 CPUs.
Running time of a single simulation takes �3min (de-
pending on the peptide and receptor sizes). Each user
submitted job is distributed on 6 CPUs and finishes
within 1.5–2 h if the queue is empty. Data management
is based on an MySQL server (v.5.1.34).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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