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Abstract: A complex antioxidant system has been developed in mammals to relieve oxidative stress.
However, excessive reactive species derived from oxygen and nitrogen may still lead to oxidative
damage to tissue and organs. Oxidative stress has been considered as a conjoint pathological
mechanism, and it contributes to initiation and progression of liver injury. A lot of risk factors,
including alcohol, drugs, environmental pollutants and irradiation, may induce oxidative stress in
liver, which in turn results in severe liver diseases, such as alcoholic liver disease and non-alcoholic
steatohepatitis. Application of antioxidants signifies a rational curative strategy to prevent and cure
liver diseases involving oxidative stress. Although conclusions drawn from clinical studies remain
uncertain, animal studies have revealed the promising in vivo therapeutic effect of antioxidants on
liver diseases. Natural antioxidants contained in edible or medicinal plants often possess strong
antioxidant and free radical scavenging abilities as well as anti-inflammatory action, which are
also supposed to be the basis of other bioactivities and health benefits. In this review, PubMed
was extensively searched for literature research. The keywords for searching oxidative stress
were free radicals, reactive oxygen, nitrogen species, anti-oxidative therapy, Chinese medicines,
natural products, antioxidants and liver diseases. The literature, including ours, with studies on
oxidative stress and anti-oxidative therapy in liver diseases were the focus. Various factors that
cause oxidative stress in liver and effects of antioxidants in the prevention and treatment of liver
diseases were summarized, questioned, and discussed.
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1. Introduction

Free radicals are atoms or molecules that have unpaired electrons, usually unstable and highly
reactive [1]. In biology system, oxygen based radicals and nitrogen based radicals are two types of
free radicals. Oxygen free radicals, such as superoxide, hydroxyl radicals, and peroxyl radicals, with
the addition of non-radicals, such as hydrogen peroxide, hypochlorous acid and ozone, are known
as reactive oxygen species (ROS), which are generated during the metabolism process of oxygen.
Reactive nitrogen species (RNS), including nitrogen based radicals and non-radicals, such as nitrogen
dioxide, nitric oxide radicals and peroxynitrite, are derived from nitric oxide and superoxide via
inducible nitric oxide synthase (iNOS) and nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase, respectively [2,3]. Due to their special chemical characteristics, ROS/RNS can initiate lipid
peroxidation, cause DNA strand breaks, and indiscriminately oxidize virtually all molecules in
biological membranes and tissues, resulting in injury. However, since the body is able to remove
ROS/RNS to a certain degree, these reactive species are not necessarily a threat to the body under
physiological conditions [3,4]. As a matter of fact, ROS are required at certain level in the body to
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perform its important physiological functions. The generation of ROS is a natural part of aerobic
life, which is responsible for the manifestation of cellular functions including signal transduction
pathways, defense against invading microorganisms and gene expression to the promotion of growth
or death [1]. Oxidative/nitrosative stress represents the bodies’ imbalance in the production and the
elimination of reactive oxygen and nitrogen species as well as decreased production of antioxidants.
In terms of oxidative stress, in specific physiological conditions, it is actually useful. For example, it
could strengthen biological defense mechanisms during appropriate physical exercise and ischemia,
and induce apoptosis to prepare the birth canal for delivery [2,3]. However, this is confined to
particular situations, and in most other cases, large levels of ROS and oxidative stress will induce
cell death through necrotic and/or apoptotic mechanisms, leading to cellular and tissue injury.

Liver is a major organ attacked by ROS [5]. Parenchymal cells are primary cells subjected to
oxidative stress induced injury in the liver. The mitochondrion, microsomes and peroxisomes in
parenchymal cells can produce ROS, regulating on PPARα, which is mainly related to the liver
fatty acid oxidation gene expression. Moreover, Kupffer cells, hepatic stellate cells and endothelial
cells are potentially more exposed or sensitive to oxidative stress-related molecules. A variety of
cytokines like TNF-α can be produced in Kupffer cells induced by oxidative stress, which might
increase inflammation and apoptosis. With regard to hepatic stellate cells, the proliferation and
collagen synthesis of hepatic stellate cells is triggered by lipid peroxidation caused by oxidative
stress [6–8]. In mammals, a sophisticated antioxidant system has been developed to maintain the
redox homeostasis in the liver (Figure 1). When the ROS is excessive, the homeostasis will be
disturbed, resulting in oxidative stress, which plays a critical role in liver diseases and other chronic
and degenerative disorders [9]. The oxidative stress not only triggers hepatic damage by inducing
irretrievable alteration of lipids, proteins and DNA contents and more importantly, modulating
pathways that control normal biological functions. Since these pathways regulate genes transcription,
protein expression, cell apoptosis, and hepatic stellate cell activation; oxidative stress is regarded as
one of the pathological mechanisms that results in initiation and progression of various liver diseases,
such as chronic viral hepatitis, alcoholic liver diseases and non-alcoholic steatohepatitis [10,11]. It has
also been suggested that there are complicated cross-talks among pathological factors, inflammation,
free radicals and immune responses [11,12]. The general mechanism scheme of oxidative stress
induced by various factors on liver disease is concluded in Figure 2. Moreover, systemic oxidative
stress arising during liver disease can also cause damage to extra-hepatic organs, such as brain
impairment and kidney failure [13]. It was suggested systemic oxidative stress might be a significant
“first hit”, acting synergistically with ammonia to induce brain edema in chronic liver failure [14].
With regard to kidney failure, systemic oxidative stress is considered to play a critical role in the
pathophysiology of several kidney diseases [15,16].
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Both enzymatic and non-enzymatic antioxidant system are essential for cellular response in
order to deal with oxidative stress under physiological condition. Therefore, antioxidant enzyme such
as CAT, SOD, and GSH-Px and non-enzymatic electron receptors such as GSH are affected and used
as indexes to evaluate the level of oxidative stress [12,17–19]. Notably, erythroid 2-related factor 2
(Nrf2) is a major regulator of cellular redox balance [20]. Under physiological condition, Nrf2 binds to
kelch-like ECH-associated protein-1 (Keap1) in the cytoplasm, and the ones remaining are inactivated
and easily to be degraded. Under oxidative stress, however, Nrf2 dissociates form Keap1 by Keap1
modification or Nrf2 phosphorylation and are thus activated. The activated Nrf2 translocates into
the nucleus and interacts with antioxidant response element (ARE), promoting the expression of
cytoprotective target genes including antioxidant enzymes and phase II detoxifying enzymes [21].
The enhanced activation of Nrf2 by pharmacologic molecules or genetic engineering has been shown
to protect the liver in different oxidative stress models [22]. For example, in terms of pharmacologic
activation of Nrf2, the use of small molecules, such as BHA, oleanolic acid, ursolic acid and CDDO-Im
have been reported to show hepatoprotection against liver damage induced by acetaminophen, a
famous drug possessing hepatotoxicity. During the process where mitochondria convert acetate into
ATP, a significant amount of free radicals are generated, which results in cellular injuries, especially
to mitochondria themselves. Activation of Nrf2 protects mitochondria from oxidative stress via
a variety of mechanisms depending on different circumstances, such as increasing antioxidant
levels, protecting against mitochondrial permeability transition pore opening, maintaining the
mitochondrial redox state, enhancing mitochondrial biogenesis by promoting transcription of nuclear
respiratory factor 1 (Nrf1). For fatty liver disease, activation of Nrf2 could facilitate fatty acid
metabolism in liver by directly regulating fatty acid metabolism related genes, such as CD36 [20,22].
Furthermore, the enhanced antioxidant signaling regulated by activated Nrf2 protects mitochondria
from oxidative damages, which further ensures competent hepatic fatty acid catabolism.

Regarding the vital role of oxidative stress in chain of liver diseases, various anti-oxidative
therapy and antioxidants are proposed to prevent and treat liver diseases [9,12]. A series of studies
have tested the effectiveness of some antioxidants in the treatment of patients with various liver
diseases, such as chronic hepatitis C virus infection, alcoholic hepatitis or cirrhosis, and non-alcoholic
fatty liver disease (NAFLD). The clinical effects of antioxidants as adjuvants including vitamin
E/C, mitoquinone, N-acetylcysteine, polaprezinc silymarin, silibinin and some antioxidant cocktail
on chronic hepatitis C patients have been examined has shown clear benefit of antioxidants to
interferon based therapy of HCV [23,24]. However, despite some positive results were obtained,
it cannot reach to the conclusion that antioxidants are useful therapeutic agents for chronic
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hepatitis C partly due to the sample scale and treatment duration. Vitamins E/C, N-acetylcysteine,
polyenylphosphatidylcholine, silymarin, and antioxidants cocktail have been attempted for the
treatment of alcoholic hepatitis or cirrhosis patients [24–26]. Although some promise has been
shown, results indicated that many antioxidants failed to improve the outcome of patients [27].
Additionally, a great deal of studies has investigated the therapeutic effects of vitamins E/C and
N-acetylcysteine on NAFLD. It is worth noting that vitamin E has been demonstrated clinically to
be a rather promising drug for the treatment of non-alcoholic steatohepatitis [28,29]. Although data
from clinical studies is yet to prove the efficacy of antioxidant, application of antioxidants is a rational
curative strategy for prevention and treatment of liver diseases involving oxidative stress [17,30].
Natural antioxidants have been found in many edible (such as fruits, vegetables, cereals and tea)
and medicinal plants, which often possess strong antioxidant and free radical scavenging abilities
as well as anti-inflammatory action [9]. Several well-elaborated reviews concerning antioxidants as
therapeutic agents for diverse liver diseases in clinic have been published [11,31,32], therefore, in
this review, particular attention will be drawn on the factors causing oxidative stress in liver and
in vivo effects of antioxidants for the prevention and treatment of liver diseases. Moreover, although
oxidative stress has been suggested to exist in almost all liver diseases, since the fact that there are no
animal models with virus-induced liver disease, including hepatitis A, hepatitis B, and hepatitis C,
the role of oxidative stress in viral hepatitis are not included in this review.

2. Oxidative Stress in Liver Diseases

2.1. Oxidative Stress Caused by Alcohol

Alcohol beverages are widely consumed all over the world; however, excessive alcohol
consumption may cause a series of health problems. It was reported that alcohol consumption
accounting for an estimated 3.8% of global mortality. Alcoholic liver disease (ALD) is one of the
most important causes of liver-related death, which is associated with increased dose and time of
alcohol intake. In 2003, it has been reported that age- and sex-adjusted mortality rate of ALD was
4.4/100,000. Although reductions in overall ALD mortality were observed in several reports on a
country scale, it is more likely due to advances in disease management rather than a decrease in
the prevalence of ALD, which could be supported by increases in hospital admissions for alcoholic
hepatic failure and alcoholic hepatitis [33–35]. ALD may progress from steatosis to more severe
liver diseases form, such as hepatitis, fibrosis, and cirrhosis [36,37]. As a matter of fact, more than
90% heavy drinkers develops fatty liver, and about 30% of heavy drinkers further develops advance
forms of ALD. Although pathogenesis of ALD has not been fully elaborated, the direct consequence
of ethanol metabolism seems to be related to ROS production, mitochondrial injury and steatosis,
which are the common features of acute and chronic alcohol exposure [32,38,39]. It is well illustrated
that at least three distinct enzymatic pathways are involved in the process of ethanol oxidation [15].
The primary pathway for the ethanol metabolism is dehydrogenase system. It is initiated by
alcohol dehydrogenase (ADH), a NAD+-requiring enzyme expressed at high levels in hepatocytes,
which oxidizes ethanol to acetaldehyde. Then, acetaldehyde enters the mitochondria where it is
oxidized to acetate by aldehyde dehydrogenases (ALDH). The second major pathway to oxidize
ethanol is the microsomal ethanol oxidizing system (MEOS), which involves an NADPH-requiring
enzyme, the cytochrome P450 enzyme CYP2E1. The MEOS pathway is prompted in individuals
who consume alcohol chronically. In addition, infrequently, ethanol can also be oxidized by catalase
in peroxisomes. Since this oxidation pathway requires the presence hydrogen peroxide (H2O2),
under normal conditions, this pathway plays no major role in alcohol metabolism [15–17]. During
the metabolism processes via dehydrogenase system and MEOS system, NADH or NADP+ will be
produced in bulk, leading to the increase of ROS, which cause oxidative stress resulting in hepatocyte
injury, and finally trigger various liver diseases (Figure 3).
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Figure 3. The metabolic process of ethanol in hepatocyte and the generation of ROS contributing to
the liver diseases.

Studies have demonstrated that enzymatic as well as non-enzymatic systems which maintaining
cellular homeostasis are remarkably affected by alcohol in diverse models. In particular, the activities
of SOD, CAT, GSH-Px, GRD, and GST, as well as the level of lipid peroxidation were changed
in animals treated with alcohol [19,40–42]. For example, SOD and CAT activities were decreased
and the lipid peroxidation level was significantly increased in the liver of 30 days alcohol-treated
diabetic rats [40]. An increase of lipid peroxidation and hepatic cytochrome P450, and decrease of
hepatic SOD, GSH-Px, GRD, GST, and GSH were also observed in mice treated with dimethoate
in combination with ethanol [41]. Furthermore, oxidative stress and antioxidant enzyme were
measured in patients with ALD [32]. It was found that as the severity of the disease increased,
followed by elevation of serum level of lipid peroxidation indicator malondialdehyde (MDA) and
the concentrations of serum vitamins E and C, which act as indexes of antioxidant status, were
decreased in ALD patients. The pro-oxidant and antioxidant status in chronic alcoholics have been
detected in several studies. The significant decreases of GSH levels in liver and blood of patients with
alcoholic liver disease were observed when compared to controls. However, the activity/content of
SOD and CAT after alcohol exposure are rather controversial, with reports of increases, no changes,
or decreases, depending on the amount and time of alcohol consumption [43,44]. Nevertheless,
the increased oxidative stress in patients with ALD has been demonstrated. It was argued that
the increases of antioxidants enzymes such as SOD, CAT and GSH-Px might be a compensatory
regulatory response to increased oxidative stress [45]. The level of ALT was increased significantly
while the level of AST was decreased significantly in patients with ALD [32,46,47].

2.2. Oxidative Stress Caused by Drugs

The liver is the most frequently targeted organ in terms of drug toxicity. The production
of radical species, specifically ROS and RNS, has been proposed as an early event of drugs
hepatotoxicity and as an indicator of hepatotoxic potential [48]. It has been discovered that a lot of
drugs could induce oxidative stress including increase of cellular oxidants and lipid peroxidation,
depletion of antioxidants in the liver, such as anti-inflammation drugs, anti-analgesic drugs,
anti-cancer drugs and antidepressants. For example, sulfasalazine, a drug to treat inflammatory
bowel diseases, has been found to induce hepatic oxidative damage [49]. Oral sulfasalazine
administration could reduce SOD but increase CAT activity significantly. It is also suggested that
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oxidative damage is involved in hepatotoxicity of sulfasalazine treatment. As for zoledronic acid,
it is a nitrogen-bearing bisphosphonate, and used to treat the cancer-associated hypercalcemia. It
has been shown that zoledronic acid significantly elevated MDA and nitric oxide levels, whereas
reduced GSH levels, which indicated that zoledronic acid could induce oxidative stress and decrease
antioxidant level in liver [18]. Furthermore, liver antioxidant capacity in hepatic injury induced by
paracetamol, an extensively used analgesic compound in mice was evaluated [50]. It was shown that
paracetamol induced a remarkable increase of MDA and nitrite as well as nitrate in the liver, with
potent decrease of total SOD and Cu/Zn-SOD activity. Samarghandian et al. [51] studied effect of
long-term treatment of morphine on enzymes, oxidative stress indices and antioxidant status in male
rat liver. The results showed that the levels of ALT, AST and lactate dehydrogenase (LDH) in serum as
well as MDA in liver were significantly elicited, while the activities of SOD, glutathione-s-transfrase
and CAT were remarkably reduced by morphine. Oxidative stress generated by anticancer drugs
including doxorubicin, paclitaxel and docetaxel in the liver of rats have been indicated. It was found
that all three drugs increased thiobarbituric acid-reactive substances (TBARS), and the administration
of docetaxel significantly decreased the activity of SOD. Furthermore, combined administration of
two drugs generated greater changes in oxidative stress related molecules than single agents [52].
Nimesulide, nonsteroidal anti-inflammatory drug, could increase the activities of ALT, AST, ALP
and the content of bilirubin in the serum. The activities of SOD and CAT and GSH-Px in the liver
were decreased by nimesulide in mice [53]. Chronic administration of fluoxetine (15 mg/kg/day)
or clozapine (20 mg/kg/day) was measured in rats exposed to chronic social isolation and controls.
The increased serum ALT activity, MDA, decreased GSH levels and compromised SOD expression
suggests a link between drugs and hepatic oxidative stress [54]. Anti-tuberculosis agent isoniazid
(INH) resulted in both oxidative and nitrosative stress, but the correlation of hepatotoxicity severity
with RNS rather than ROS suggested that ONOO´ generation and mitochondrial dysfunction are
responsible mechanisms for hepatotoxicity of INH in vivo [55,56].

Although hepatotoxicity induced by various drugs in humans has been demonstrated in a great
number of clinical trials, report concerning the role of oxidative stress in patients with drug induced
liver disease is limited by far. For example, mitochondrial dysfunction and DNA damage are found
to be critical events in the underling mechanism of paracetamol induced hepatotoxicity in patients,
which is supposed to partly attribute to oxidative stress, but, accurate and direct evidence to show
the status and role oxidative stress in patients is lacking [57]. As a matter of fact, currently, in
addition to animal model study, the investigation of hepatotoxicity induced by drugs is mainly based
on the results of retrospective study, whereas there are few clinical studies with large numbers of
patients. Moreover, models using human cells have been attempted to mimic pathogenesis of drug
induced hepatotoxicity in humans [55]. Overall, clinical data and appropriate experimental model,
which could closely resemble the human pathophysiology, is critical for future study of antioxidant
treatment for hepato-toxicity caused by drugs.

2.3. Oxidative Stress Caused by Environmental Pollutants

Environmental pollutants such as heavy metals and microcystin have been shown to cause
oxidative damage in liver of animal models. Antioxidant defense system in rat liver was damaged
after mercury chloride treatment [58]. Mercury chloride at the dose of 0.1 mg/kg could induce
a significant decrease in both Mn-dependent SOD and Cu- and Zn-dependent SOD activities, and
progressive changes of CAT, GSH-Px, GRD and glucose-6-phosphate dehydrogenase activities. This
is also accompanied by a minor increase in serum ALT and γ glutamyltransferase. The results showed
that low dose of mercury could incur oxidative stress and hepatic damage. Besides mercury, lead
was also found to exacerbate liver lipid peroxidation in protein-undernutrited rats, in which the
study also suggested that free radicals is a pathological mechanism for hepatotoxicity of lead [59].
Microcystins are algae toxins produced by cyanobacteria, kind of cyclic nonribosomal peptides,
possessing hepatotoxicity that may cause severe injury to the liver. The effect of microcystin LR,
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the most studied toxic variants, on antioxidant enzymes and lipid peroxidation was investigated
in liver rats after acute exposure [60]. The reduction of enzymes activities of GSH-Px, GRD, SOD
and CAT as well as significant increase of lipid peroxidation levels were observed in the liver of
microcystin LR-treated rat. These results showed that acute exposure of microcystin LR could result
in perturbation of the antioxidant enzymes, suggesting the involvement of oxidative stress in the
pathogenesis of microcystin LR-induced toxicity.

2.4. Oxidative Stress Caused by Other Factors

Other factors such as radiation and temperature may also induce hepatic oxidative stress. The
oxidative stress induced through exposure of mobile phone-like radiation has been investigated in
the liver of guinea pigs [61]. The results showed that after radiation exposure, the levels of MDA
and total nitric oxide were significantly increased and the activities of SOD, myeloperoxidase and
GSH-Px were reduced in the liver of guinea pigs. Additionally, the severity of oxidative damage
was increased along with the duration of radiation exposure. The results suggested that mobile
phone-like radiofrequency radiation could induce oxidative damage in liver, implying the adverse
effect of mobile phone use. Moreover, study observed that cold stress could lead to decrease in CAT,
SOD and GSH-Px activities in rat liver when the rats were kept at 10 ˝C for a week, which indicated
that cold stress may cause hepatic damage which is associated with oxidative stress [62].

Benzoyl peroxide is a substance with strong oxidizing capacity, and broadly used as flour
bleaching agent. The hepatic antioxidant status and ATPases were affected by benzoyl peroxide in
mice [63]. Following benzoyl peroxide exposure, SOD activity was reduced significantly, whereas
the content of MDA was increased in liver tissue. The activities of Ca2+-ATPase and Mg2+-ATPase
in liver were also significantly decreased by benzoyl peroxide. In another study, the effect of
ZnO2 nanoparticles, a common cosmetic component, on cellular oxidative stress in mouse liver was
investigated [64]. After exposure to ZnO2 nanoparticles, viability of hepatic cells was decreased in
concentration-dependent manner, and decrease in antioxidant enzyme levels as well as increase in
DNA adduct.

Studies have suggested that maternal high-fat diet feeding could raise the incidence of
metabolism-related diseases in offspring, including chronic liver disease. Zhang et al. [65] found that
maternal high-fat diet increased the level of plasma triglyceride and hepatic TBARS significantly. The
size of lipid droplets in the liver of rat offspring was also increased. Expression of antioxidant defense
genes, such as GSH-Px-1, Cu/Zn-SOD, and paraoxonase enzymes, were significantly lowered in
the liver. Up-regulation of the inhibitor of cyclooxygenase-2 and cyclin dependent kinase 4a, and
down-regulation of cyclin D1 and phosphorylation of retinoblastoma protein were found in the
offspring. These results suggested that maternal high-fat diet might reduce the capacity of antioxidant
defense and speed up cellular senescence in hepatic tissue of older offspring. In another study,
the effect of high dietary salt on hepatic antioxidant defensing enzyme of fructose-fed rats was
investigated [66]. Feeding fructose-fed rats with high-salt diet could trigger hyperinsulinemia and
insulin resistance resulting in membrane perturbation. This potentially enhanced hepatic lipid
peroxidation in the presence of steatosis, and led to decrease in antioxidant defenses, as observed
by reduction of GSH, SOD and CAT activities. These results indicated that consumption of salt-rich
diet by insulin-resistant subjects could lead to sodium reabsorption, which may aggravate hepatic
lipid peroxidation related to damage antioxidant defenses.

In addition to those liver injury induced by exogenous substances, hepatic oxidative stress has
been revealed in other liver diseases and functional disorders. For instance, Messarah et al. [67]
has found that thyroid dysfunction would increase lipid peroxidation and oxidative stress status
in rat liver. In another study, oxidative stress and antioxidant status in patients with autoimmune
cholestatic liver diseases (AC) or autoimmune hepatitis (AIH) were investigated [68]. Several markers
of oxidative injury and antioxidant components in whole blood, serum, and urine of 49 patients with
AC and 36 patients with AIH as well as healthy subjects were assessed. The results showed that both
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AC and AIH patients had increased levels in oxidation products of lipid and protein while significant
decreased of whole blood GSH level. Protein carbonyl and isoprostane levels were increased and
GSH level was gradually decreased with disease severity level (mild to severe fibrosis and cirrhosis)
in both AC and AIH patients. In addition, AIH patients had higher levels of aldehydes and GSH-Px
activity and lower protein carbonyl levels compared to AC patients. In patients with nonalcoholic
fatty liver disease (NAFLD), the oxidative stress and antioxidant status were changed as well [69].
It was shown that level of TBARS in NAFLD patients was significantly higher than subjects with
viral hepatitis or healthy controls. Moreover, the ferric reducing ability of plasma in patients with
NAFLD was significantly higher than healthy controls, and diseased control group of patients. These
results implied that lipid peroxidation and oxidative stress were significantly increased in patients
with NAFLD. Although existence of hepatic oxidative stress in various liver diseases was commonly
observed, the relationship between oxidative damage and diseases are causal and not strictly defined.

3. Antioxidants for Prevention and Treatment of Liver Diseases

3.1. Antioxidants for Prevention and Treatment of Alcoholic Liver Diseases

An obvious avenue of alcoholic liver diseases (ALD) prevention would be abstinence; however,
abstinence is not easy to maintain due to the high rate of recidivism in alcoholics [14]. As mentioned
above, ALD develops from simple steatosis to more severe disease forms including hepatitis, fibrosis,
cirrhosis, and even hepatocellular carcinoma, which implies that preventing disease development
at the early stage would be more effective than receiving treatment at end-stage of liver disease.
Notably, TNF, a group of cytotoxic pro-inflammatory cytokines, is thought to play a vital role in
initiation of liver damage [70]. Increasing evidence has indicated that oxidative stress might act
together with endotoxins to increase TNF production. Increased circulating TNF-α stimulates TNF-α
receptors of cell surface, which leads to activation of the stress-related protein kinases JNK and
IKKβ, resulting in increased production of additional inflammatory cytokines, and reduced insulin
sensitivity. Consequently, the inhibition of TNF is regarded as a therapy to block fatty liver and relieve
liver injury [70,71]. Pharmacological and genetic manipulation of TNF have been attempted to treat
liver disease. For example, anti-TNF antibodies or knocking out TNF-R1 have been treated to mice
to protect against the development of ALD. However, since liver regeneration requires low “basal”
contents of TNF, down regulating but not blocking totally TNF activity is a preferred therapeutic
intervention for liver disease [71,72]. With better understanding of the mechanism that regulates
the initiation and advancement of ALD, antioxidant therapy could be developed as directed therapy
to prevent or treat ALD [32,37,73,74]. It has been demonstrated that many food and plants, such
as vegetables, fruits, tea, cereals, medicinal plants, microalgae, edible macro-fungi, and wild flowers,
have abundant natural antioxidants, and possess the ability of eliminating free radicals and protecting
the liver from oxidative stress [75–83], and thus might be beneficial for liver diseases.

In recent years, a great number of natural plants has been attempted to eliminate hepatic damage
induced by ethanol in animal models, and the bioactive compounds that are responsible for relieving
oxidative stress are usually indistinctly ascribed to polyphenols and flavonoids compounds [42,84–87].
For example, it has been found that green tea, containing abundant water-soluble antioxidants,
showed positive effect on the antioxidant abilities in rat liver with chronic ethanol treatment [84]. It
was shown that significant reduction of enzymatic and non-enzymatic antioxidants levels, as well as
increased levels of lipid and protein modifications was induced by ethanol diet. After administration
of green tea, interestingly, the enzymes activity and level of non-enzymatic antioxidants as well as
lipid and protein oxidation products were partly normalized. The effects of some natural products on
hepatic alcoholic damage associated with oxidative stress were summarized in Table 1, which indicate
that anti-oxidative treatment is an encouraging method to reduce alcoholic liver injury. Besides
phenolic compounds, more specific bioactive compounds should be further identified and isolated
in the future.
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Table 1. The effects of antioxidants/plants on alcoholic liver damage. Up-arrow means increase and up-regulation, and down-arrows means decrease and
down-regulation.

Models
(Prevent/Treatemnt) Materials Effect Dose (Dose-Effect) Bioactive Compounds References

Rats treated with ethanol
diet (Prevent) Green tea

Ò Enzymes,
non-enzymatic

antioxidants; Ó lipid and
protein oxidation

7 g/L in ethanol
Lieber-DeCarli diet

Epicatechin,
epicatechin gallate [84]

Rats treated with ethanol
(Prevent) Ziziphus mauritiana leaf

Ó ALT, AST, ALP, total
bilirubin, CAT; Ò GSH-Px,

glutathione reductase
and SOD

200 and 400 mg/kg b.w.
(Dose-effect)

Tannins, saponins and
phenolic compounds [42]

Rats sub-chronically
exposed to ethanol

(Prevent)

Amaranthus
hypochondriacus seed

ÓMDA, NADPH; Ò Cu,
Zn-SOD 140 g/kg in diet Total phenols [87]

Mice with acute
alcohol-induced liver

injury (Prevent)

Peduncles of
Hoveniadulcis

Ó ALT, AST, MDA; Ò
SOD, GSH-Px

100, 350 and 600 mg/kg
b.w. (Dose-effect)

Non-starch
polysaccharide [86]

Rats treated with ehanol
(Prevent)

Methanolic extract from
Hammada scoparia leaves

Ó Aminotransferase,
glycogen synthase
kinase-3 β, lipid

peroxidation; Ò GSH-Px

200 mg/kg b.w. Phenolic compounds [85]

Mice with chronic
alcoholic liver damage

(Prevent)
Jujube honey

Ó Lipoprotein oxidation,
AST, ALT, MAD,

8-hydroxy-2-deoxyguanosine;
Ò GSH-Px

27 and 54 g /kg b.w.
(Dose-effect) Phenolic acids [88]

Mice with
alcohol-induced
hepatotoxicity

(Treatment)

Freeze-dried, germinated
and fermented mung

bean
Ò Antioxidant levels, NO 200 and 1000 mg/kg b.w. [89]

Chronic ethanol exposure
in rats (Prevent) Virgin olive oil

Ó Transaminases levels,
hepatic lipid

peroxidation; Ò GSH-Px,
SOD and CAT

5% (wt/wt) in diet Tocopherols, chlorophyll,
total polyphenols [90]
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In addition to these natural products, many single compounds have been investigated for their
role in eliminating oxidative stress, such as L-theanine, vitamin E, N-acetyl cysteine, raxofelast
and betaine [91]. L-theanine, a unique amino acid in green tea, has been proven to possess
the ability to prevent alcoholic hepatic damage via augmenting antioxidant capacities [91]. The
ethanol-stimulated increase of ALT, AST, and MDA and reduction of antioxidant enzymes activities
including the activities of SOD, and CAT, as well as level of GSH were significantly inhibited by
L-theanine. The regulation of L-theanine on alcohol-induced fat droplets was further confirmed
by histopathological examination. Besides, vitamin E is considered to be beneficial for prevention
of diseases associated with oxidative stress because of its remarkable anti-oxidative properties.
Kaur et al. [92] has proven that vitamin E could restore the redox status, prevent oxidative stress
and reduce apoptosis, and could be used as a prospective curative agent for ethanol-induced hepatic
oxidative injury. Moreover, raxofelast, an analog of vitamin E, possesses the ability to inhibit lipid
peroxidation in mice exposed to ethanol [93]. Raxofelast diminished the increased hepatic NF-κB
activity, reduced serum ALT and liver triglycerides, lowered hepatic MAD levels, prevented liver
GSH depletion, decreased Toll-like receptor-4, TNF-α, IL-6 and intercellular adhesion molecule-1
hepatic gene expression. It has been suggested that raxofelast blunted the inflammatory cascade and
liver damage during chronic ethanol exposure. N-acetyl cysteine, a scavenger of ROS, may reverse
alcoholic liver damage, and alter activities of matrix metalloproteinases [94]. Furthermore, it was
shown that the ethanol-induced oxidative stress could be inhibited effectively by betaine, which is
also responsible to its hepatoprotection [95].

Betulinic acid is a pentacycliclupane-type triterpene, and has a wide range of bioactivities.
Yi et al. [96] has reported that pre-treatment of betulinic acid could significantly reduce the serum
levels of ALT, AST, total cholesterol, and triacylglycerides in the mice treated with alcohol. Hepatic
levels of GSH, SOD, GSH-Px, and CAT were remarkably increased, while MDA contents and
microvesicular steatosis in the liver were decreased by betulinic acid. It was suggested that the
hepatoprotective effect of betulinic acid is associated with the improvement of antioxidant enzymes
capacity, primarily via enhancement of the tissue redox system and protection of the antioxidant
system in the liver. Demethyleneberberine, a natural mitochondria-targeted antioxidant found in
Chinese herb Cortex Phellodendri chinensis, has been demonstrated the ability of inhibiting oxidative
stress and steatosis in acutely/chronically ethanol-fed mice [97].

3.2. Antioxidants for Prevention and Treatment of Non-Alcoholic Fatty Liver Diseases

NAFLD is characterized by abnormal fatty acids deposition in the liver cells of patients
without excessive alcohol intake, viral infection or other hepatoxins, including a broad spectrum
of histological irregularities [98]. Notably, obesity is considered to be the main risk factor for the
development of NAFLD and the main driver of rapid rise of NAFLD prevalence [99]. The oxidative
stress of endoplasmic reticulum induced by free fatty acid in the liver might contribute to the hepatic
injury, progressive fibrosis and even cirrhosis [100]. In Table 2, certain antioxidants or plants were
attempted to reduce liver injury induced by high fat diet in experimental animals, which indicated
that most of them showed both antioxidant and hepato-protective effects. Furthermore, in a clinical
trial that aims to systematically evaluate the effect of antioxidant supplements, it was found that
AST levels, but not of ALT levels were reduced significantly in patients with NAFLD by antioxidant
intervention. It should be pointed out that, however, data obtained is so far insufficient to figure out
whether dietary supplements is beneficial or useless for patients with NAFLD [98]. To address this
issue, large-scaled of prospective randomized clinical studies on this topic is quite necessary.

It has also been indicated that insulin resistance, oxidative stress, and the inflammatory cascade
play a vital role in the pathogenesis of NAFLD by animal study. Data from clinic trial indicated
that insulin resistance is a high risk factor of NAFLD. Recent studies have shown that insulin
resistance is present in surrounding tissue and live of almost all NAFLD patients [44]. The severity
of insulin resistance is correlated with the progression of disease. However, the role of oxidative
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stress and inflammation in the pathogenesis of NAFLD cascade need to be further studied in human.
In the setting of obesity, increased fatty acids and other related metabolites enhance oxidative
phosphorylation and ATP generation, leads to increase ROS/RNS production and oxidative stress.
Multiple stress-sensitive kinase signaling cascades, such as JNK and IKKβ, are activated by the
increased oxidative stress. Once activated, these kinases are able to phosphorylate multiple targets,
including the insulin receptor and the family of IRS proteins [101]. Insulin action is impaired by
the abnormal serine/threonine phosphorylation in insulin receptor and IRS proteins such as IRS-1
and IRS-2, resulting in insulin resistance. In hyperglycemia caused by insulin resistance, intensive
redox reactions occur during the process of protein glycation, generating a great deal of ROS [102].
Additionally, hyperglycemia and high insulin levels stimulate fatty acids synthesis and result in
increasing lipid droplets storage within hepatocytes. The excessive intracellular levels of lipid can
induce hepatocytes dysfunction or death. The increased ROS also act on large molecules such as
poly-unsaturated fatty acids to initiate lipid per-oxidation, which further change the fluidity and
permeability of the cell membrane. The inflammatory infiltration induced by lipid per-oxidation may
also result in liver inflammation and necrosis, and even fibrosis. In mitochondrion, lipid peroxidation
reduces the activity of mitochondrial respiratory chain, and thereby produces more ROS and increase
oxidative stress. The prolonged oxidative stress may favor insulin resistance circularly, acting like
a vicious circle. Then, the persistent exposure of oxidative stress and hyperglycemia contribute
to NAFLD [103,104]. In addition to obesity, other risk factors such as drugs, re-feeding syndrome
and other disorders are considered. For example, streptozotocin-induced diabetic rats constitutes as
the model of oxidative stress. It was indicated that supplementation of alpha-tocopherol increased
alpha-tocopherol in liver, but not in plasma [105]. Diet supplementation of acai, a promising source
of natural antioxidants, could increase mRNA levels of gamma-glutamylcysteinesynthetase and
GSH-Px in liver tissue, and decrease ROS produced by neutrophils. In addition, supplementation
with acai could decrease thiobarbituric acid-reactive substances levels, and increase reduced GSH
content in the liver. Moreover, the effect of dietary supplementation of vitamins C and E on oxidative
stress and antioxidant redox systems was studied in streptozotocin-induced aged diabetic rats [106].
GSH-Px activity and the concentration of vitamin E in liver were lower, whereas lipid peroxidation
levels in liver, and contents of ALT and AST in plasma were higher in the diabetic group than
in the control group and were mostly restored by vitamins C and E treatment. Furthermore, the
combined treatment with vitamin C, vitamin E, and Se showed a curative effect against the liver
injury in streptozotocin-induced diabetic rats [107]. The effects of some antioxidants/plants on liver
of streptozotocin-induced diabetic rats are summarized in Table 3.
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Table 2. The effects of some antioxidants/plants on NAFLD.

Models
(Prevent/Treatment) Antioxidant/Plants Effects Dose (Dose-Effect) Bioactive Compounds References

Diabetic rats fed on a
high fat thermolyzed diet

(Prevent)

Omega
3-polyunsaturated fatty

acids

Ò SOD, CAT; Ó
triglycerides,

non-esterified fatty acid,
lipoperoxidation

3.0% in diet
Omega

3-polyunsaturated fatty
acids

[108]

Mice fed with high-fat
diet (Prevent and

treatment)

Moringa oleifera leaves;
haw pectic

oligosaccharide; Thymbra
spicata

Ò GSH; Ó ALT, AST, ALP,
lipid peroxidation

50, 150 and 300 mg/kg
b.w. (No dose–effect)

Haw pectic
oligosaccharide [109–111]

Liver damage in
diet-induced

atherosclerotic rats
(Prevent)

Tulbaghia violacea
rhizomes

Ó LDH, AST, ALT, ALP,
bilirubin antioxidation 100 mg/kg b.w. [112]

Rabbits with high-fat diet
(Prevent) Apolipoprotein A–I Ò SOD, GSH-Px; Ó iNOS,

MDA 15 mg/kg b.w. [113]

WeRats fed a high-fat diet
(Prevent) Black cabbage sprout Ò SOD, CAT, NADPH,

GSH-Px, GRD GST
250 and 500 mg/kg b.w.

(Dose–effect) [114]
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Table 3. The effects of some antioxidants/plants on liver of streptozotocin-induced diabetic rat.

Models (Prevent/Treatment) Materials Effects Dose (Dose-Effect) References

Streptozotocin-induced
diabetic aged rats (Prevent) Vitamins C and E Antioxidation,

hepatoprotection [106]

Streptozotocin-induced
diabetic rats (Prevent) Acai Antioxidation,

hepatoprotection 2% (w/w) in standard diet [115]

Streptozotocin-induced
diabetic rats (Prevent) Herba bidentis Antioxidation,

hepatoprotection 5 mL/kg [116]

Streptozotocin-induced
diabetic rats (Prevent) (´)-Epicatechin Antioxidation 15 and 30 mg/kg (Dose–effect) [117]

Streptozotocin-induced
diabetic rats (Treatment) Stobadine 24.7 mg/kg [118]

Streptozotocin-induced
diabetic mice (Prevent) Terminalia glaucescens leaves Antioxidation 100 and 300 mg/kg (Dose–effect) [119]

Streptozotocin-induced
diabetic rats (Treatment) Berberine Antioxidation 75, 150 and 300 mg/kg (Dose–effect) [120]

Streptozotocin-induced
diabetic rats (Prevent) Aloe vera leaves 300 mg/kg [121]

Streptozotocin-induced
diabetic rats (Treatment) N-Acetylcysteine Antioxidation 1.5 g/kg [122]

Streptozotocin-induced
diabetic rats (Treatment) Oroxylum indicum stem bark Antioxidation 250 mg/kg [123]

Streptozotocin-induced
diabetic rats (Treatment) Maslinic acid Antioxidation 40, 80 and 160 mg/kg (Dose–effect) [124]

Streptozotocin-induced
diabetic rats (Treatment) Resveratrol Antioxidation 20 mg/kg [125]

Streptozotocin-nicotinamide
induced diabetic rats (Prevent) Stevia rebaudiana Antioxidation [126]
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3.3. Antioxidants for Prevention and Treatment of Liver Diseases Induced by Other Factors

Since liver is an essential organ for detoxification and metabolism, and all pharmaceuticals make
their way to the liver, for storage and therefore it is more prone to damage [127,128]. Paracetamol is
widely used to relieve pain and reduce fever. Although use of paracetamol at its recommended dose is
generally safe, overdose could still cause severe hepatic damage in many cases. As mentioned above,
paracetamol may induce a remarkable increase of MDA and nitrite as well as nitrate in the liver, apart
from a significant reduction in total SOD and Cu/Zn-SOD activity. Models of paracetamol-induced
liver damage in mice/rats are widely used to study antioxidant and hepatoprotective effects of
antioxidants/plants. For example, Rasool et al. [129] studied hepatoprotective and antioxidant effects
of Gallic acid in paracetamol-induced liver damage in mice. It was shown that Gallic acid possessed
antioxidant and hepatoprotective effects. In addition to paracetamol, some other drugs such as
doxorubicin, tert-butyl hydroperoxide and D-galactosamine may also induce liver injury, which is
possibly associated with the rise of oxidative stress. The effects of certain antioxidants/plants on
paracetamol and other drugs-induced liver damage are summarized in Table 4. As seen from Table 4,
a conclusion could be drawn that materials possessing antioxidant activity also hold capacity of
hepatoprotection in animal model, which implies the correlation between antioxidative property of
these compounds and their hepatoprotective effect.

Table 4. The effects of some antioxidants/plants on drugs-induced liver damage.

Models
(Prevent/Treatment) Materials Effects Dose

(Dose-Effect) References

Paracetamol-induced
liver toxicity in mice

(Prevent)
Gallic acid Antioxidation,

hepatoprotection 100 mg/kg [129]

Paracetamol-induced
liver toxicity in mice

(Prevent)
Sauchinone Antioxidation,

hepatoprotection 30 mg/kg [130]

Paracetamol-induced
liver toxicity in mice

(Prevent)
Genistein Antioxidation,

hepatoprotection

50, 100 and
200 mg/kg

(Dose-effect)
[131]

Paracetamol-induced
liver toxicity in mice

(Prevent)
Phyllanthus niruri Antioxidation,

hepatoprotection 100 mg/kg [132]

Paracetamol-induced
liver toxicity in mice

(Prevent)

Polyalthia longifolia
leaves

Antioxidation,
hepatoprotection 200 mg/kg [133]

Paracetamol-induced
liver damage in rats

(Prevent)

Boerhaavia diffusa
leaves

Antioxidation,
hepatoprotection

100, 200, 300 and
400 mg/kg/day
(No dose-effect)

[134]

Paracetamol-induced
liver damage in rats

(Prevent)

Saponarin from
Gypsophila
trichotoma

Antioxidation,
hepatoprotection 80 mg/kg/week [135]

Lipopolysaccharide-induced
liver injury in rats

(Prevent)
Carnosic acid Antioxidation,

hepatoprotection

15, 30 and
60 mg/kg

(Dose-effect)
[136]

D-Galactosamine-induced
liver injury in rats

(Prevent)

Combination of
selenium, ascorbic
acid, β-carotene,
and α-tocopherol

Antioxidation,
hepatoprotection [137]

D-Galactosamine-induced
liver injury in rats

(Prevent)
Leucasaspera Antioxidation,

hepatoprotection

200 and
400 mg/kg (No

dose-effect)
[138]
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Table 4. Cont.

Models
(Prevent/Treatment) Materials Effects Dose

(Dose-Effect) References

D-Galactosamine-induced
liver injury in rats (Prevent)

Swertiamarin from
Enicostemma

axillare

Antioxidation,
hepatoprotection

100 and
200 mg/kg (No

dose-effect)
[139]

Lipopolysaccharide/
D-galactosamineinduced

liver injury in rats (Prevent)
Curcumin Antioxidation,

hepatoprotection 100 mg/kg [140]

Lipopolysaccharide/
D-galactosamineinduced

liver injury in rats (Prevent)
betulinic acid Antioxidation,

hepatoprotection
20 and 50 mg/kg
(No dose-effect) [141]

Lipopolysaccharide/
D-galactosamine induced
hepatitis in rats (Prevent)

Tridaxprocumbens Antioxidation 300 mg/kg [142]

Doxorubicin-induced liver
injury in rats N-acetylcysteine Antioxidation,

hepatoprotection 10 mg/kg [143]

Cisplatin-induced liver
injury in rats (Prevent) Tomato juice Antioxidation,

hepatoprotection [144]

Tert-butyl
hydroperoxide-induced

liver injury in rats (Prevent)
Propolis Antioxidation,

hepatoprotection
50 and 100 mg/kg

(No dose-effect) [145]

Tamoxifen-induced liver
injury in mice (Prevent) Catechin Antioxidation 40 mg/kg [146]

Hepatic steatosis stimulated
with tunicamycin

(Treatment)
Melatonin

Ó ER stress,
expression of

miR-23a
[147]

Ethionine-induced liver
injury in mice (Prevent) Melatonin Antioxidation,

hepatoprotection 3 mg/kg [148]

Many pollutants and toxic substances could cause oxidative stress/damage of liver as mentioned
above. Among pollutants and toxins that have been used to model hepatic injury in animals for
studying effects of antioxidants/plants on pollutant-induced liver damage, carbon tetrachloride
(CCl4) is most widely used. In CCl4-induced liver injury model, oxidative stress could be provoked,
which prompts lipid peroxidation that injure hepatocellular membrane, followed by substantial
release of pro-inflammatory chemokines and cytokines, which in consequence of liver damage [10].
A large amount of plants, especially medicinal plants, has been investigated to eliminate the hepatic
damage stimulated by CCl4. For example, Coptidis rhizome, a traditional Chinese medicinal plant used
to clear heat and scavenge toxins, belongs to liver meridian in Chinese medicinal practice [149,150].
The effect of Coptidis rhizome and its bioactive compound berberine on CCl4-induced chronic and
acute hepatotoxicity in rats has been thoroughly studied by our research group [10,30,127]. We
have found that Coptidis rhizome might act as an antioxidant to relieve CCl4-induced oxidative stress
and hepatic damage. The mechanism may partly be ascribed to the reduced phosphorylation of
Erk1/2 expression when exposed to oxidative stress [10]. The effects of some antioxidants/plants on
toxic substances-induced liver damage are summarized in Table 5. It is particularly worth noting
that Nrf2 could be activated by several antioxidants/plants in dimethylnitrosamine or cadmium
induced hepatic injury models [151–153]. Antioxidant could induce both modification of inhibitor
of Nrf2 (INrf2) cysteine 151 and PKC-mediated phosphorylation of Nrf2 serine 40 to release Nrf2
from INrf2. The dissociated and activated Nrf2 then translocates to the nucleus, binds to ARE
and up-regulates antioxidants gene expression, which protects cells and relieves injury induced by
oxidative stress [154]. Although most of the studies shown in Table 5 suggested the simultaneous role
of these natural products as antioxidative and hepatoprotective agents, the related mechanisms and
signal pathways have not yet fully studied.
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Accumulating evidence demonstrated that ROS could lead to protein modification, lipid
peroxidation, DNA damage and therefore acts as the initiator or promoter of carcinogenesis [155–157].
As the first line defense in suppressing tumor initiation, antioxidants are treated as one of the
promising strategies to prevent liver cancer. Furthermore, it has been reported that the combination
of certain chemotherapeutic drugs and antioxidants could reduce drug resistance, sensitizing the liver
cancer cells to chemotherapeutics and therefore improving the efficacy of anti-cancer therapy [158].
Our previous studies demonstrated that Coptidis rhizome and berberine are promising agents to fight
against liver cancer due to their hepatoprotective and antioxidant properties [155,157,159,160]. In all,
cumulative evidence from epidemiological and clinical studies showed that consumption of suitable
antioxidants from natural sources may beneficial in fighting against cancer without obvious adverse
effects. Besides liver cancer, oxidative injury-associated liver damage induced by other disorders has
also been mentioned for confirming the use of antioxidants in the related diseases. For example, it
was found that taking catechin from green tea could reduce injury of liver in cholestatic rats induced
by bile duct ligation [161]. Allopurinol, a competitive xanthine oxidase inhibitor, has also been used to
reduce systemic oxidative stress. The xanthine oxidase over-activity is suggested to play a role in the
altered intestinal permeability in cirrhosis, it was found in an open-label pilot study that changes in
intestinal permeability correlated to changes in MDA serum values after allopurinol treatment [162].
Additionally, treatment with allopurinol in bile-duct ligation rats and TAA induced liver injury was
shown to reduce ROS and thus attenuate brain edema [163]. Effects of certain antioxidants/plants
on other substances-induced liver damage are summarized in Table 6, which suggested that some
antioxidants possess anti-tumor and hepatoprotective effects collectively in vivo, but the relationship
and mechanisms need further exploration.

Notably, melatonin, N-acethyl-5-metoxytryptamine, a famous hormone synthesized mainly by
the pineal gland, has been demonstrated as having striking antioxidant properties in numerous
studies. It has the remarkable capability to scavenge both ROS and RNS, and block transcriptional
factors of pro-inflammatory cytokines. Recently, it has been applied to the treatment of liver
disease in terms of reducing oxidative stress [164]. A variety of liver disease models, such as
streptozocin-induced diabetic rats and TAA-induced or bile-duct ligated fibrosis rats, melatonin
administration showed hepato-protection partially via improving oxidative damage. As a matter of
fact, it has been demonstrated that melatonin is even better antioxidant than vitamin E and C in the
contexts of certain disease. A comparative study of the protective effects of melatonin and vitamin E
on extra-hepatic bile duct ligation in rats indicated that melatonin is much more efficient than vitamin
E in reducing the cholestasis parameters, decreasing lipid peroxidation and restoring anti-oxidative
enzymes [165,166]. Further investigations are required to evaluate antioxidant and hepato-protective
effect of melatonin in clinic.
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Table 5. The effects of some antioxidants/plants on toxins-induced liver damage.

Model
(Prevent/Treatment) Antioxidant/Plant Effects Dose/(Dose–Effect) Bioactive Compounds References

CCl4-induced liver
damage in rats (Prevent) Coptidis rhizome and berberine Ò SOD; Ó ALT, AST,

Erk1/2

Berberine: 120 mg/kg
b.w. Extract: 800 mg/kg

b.w.
Berberine [10]

CCl4-induced liver
damage in rats (Prevent)

Friedelin isolated from Azima
tetracantha leaves

Ò SOD, CAT, GSH,
GSH-Px; Ó ALT, AST,

LDH
[59]

CCl4-induced liver
damage in rats

(Treatment)

N-butanol fraction of Actinidias
deliciosa roots Ò GSH; Ó ALT, AST, MDA (Dose–effect) Oleanolic acid [167]

CCl4-induced liver
damage in rats (Prevent) Silybum marianum seeds Ò GSH; HDL/LDL;

hepatoprotection 100 mg/kg b.w. [168]

CCl4-induced liver
damage in rats (Prevent) Dioclea reflexa seeds Ò SOD, CAT; Ó

Transaminases, MDA
5 mg/kg (acute)

2.5 mg/kg b.w. (chronic) [169]

CCl4-induced liver
damage in rats (Prevent)

Morus bombycis,
2,5-dihydroxy-4,31-di

(β-D-glucopyranosyloxy)-trans-stilbene

Ó Lipid peroxidation;
hepatoprotection

100, 300 and 500 mg/kg
b.w. (No dose–effect) [170,171]

CCl4-induced liver
damage in rats (Prevent) Nigella sativa, Urticadioica

Ò Antioxidant enzyme; Ó
lipid peroxidation;
hepatoprotection

Nigella sativa: 0.2 mg/mL
Urtica dioica: 0.2 mg/mL [172]

CCl4-induced liver
damage in rats (Prevent)

Pleurotusostreatus (oyster
mushroom)

Ò GSH, CAT, SOD,
GSH-Px; Ó ALT, AST,

ALP, MDA
200 mg/kg b.w. [173]

CCl4-induced liver
damage in rats (Prevent) Cytisusscoparius

Ò GSH, CAT, SOD,
GSH-Px, GST, GRD; Ó

ALT, AST, LDH

250 and 500 mg/kg
(No dose–effect) [174]

CCl4-induced liver
damage in rats (Prevent) Ethanol extract of Phellinusmerrillii Ò CAT, SOD, GSH-Px; Ó

ALT, AST
0.5, 1 and 2 g/kg b.w.

(No dose–effect) [175]

CCl4-induced liver
damage in rats (Prevent) Ginkgo biloba

Ò GSH, SOD, CAT,
GSH-Px, GRD, albumin;

hepatoprotection

25 and 50 mg/kg b.w.
(No dose–effect) [176]
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Table 5. Cont.

Model
(Prevent/Treatment) Antioxidant/Plant Effects Dose/(Dose–Effect) Bioactive Compounds References

CCl4-induced liver
damage in mice (Prevent)

Protein isolate from
Phyllanthus niruri

Ò SOD, CAT; Ó ALT, ALP;
lipid peroxidation 5 mg/kg b.w. [177]

CCl4-induced liver
damage in mice (Prevent)

Kahweol and cafestol
(Coffee)

Ó ALT, AST, cytochrome
P450 2E1, lipid
peroxidation

Kahweol or cafestol:
10–100 mg/kg b.w.

(Dose–effect)
Kahweol and cafestol [178]

CCl4-induced liver
damage in rats (Prevent) Cirsium setidens Ò GSH-Px; SOD;

hepatoprotection 500 mg/kg b.w. [179]

CCl4-induced liver
damage in rats (Prevent)

Curcumin and
saikosaponin A

Ò SOD, GSH; ÓMDA;
hepatoprotection [180]

CCl4-induced liver
damage in rats (Prevent)

Ethanolic extract of
Momordica tuberosa tubers

Antioxidation,
hepatoprotection [181]

CCl4-induced liver
damage in rats (Prevent) Oregano and rosemary Ó AST, ALT, ALP;

antioxidation 20 g/kg b.w. [182]

CCl4-induced liver
damage in rats (Prevent) Enicostemma axillare Antioxidation,

hepatoprotection
100 and 200 mg/kg b.w.

(No dose–effect) [139]

CCl4-induced liver
damage in rats (Prevent)

Ficuscarica leaves and
fruits, Morus alba root

barks

Ò CAT, SOD, GSH; Ó
MDA, AST, ALT, ALP

50 and 150 mg/kg b.w.
(No dose–effect) [183]

CCl4-induced liver
damage in rats (Prevent) Podophyllum hexandrum

Ò GSH, GSH-Px, GRD,
SOD, GST; Ó AST, ALT,

LDH

20, 30 and 50 mg/kg b.w.
(No dose–effect) [184]

CCl4-induced liver
damage in rats (Prevent) Ficusreligiosa roots

Ò CAT, GSH-Px, GRD,
SOD, GST; Ó lipid

peroxidation;
hepatoprotection

[185]

CCl4-induced liver
damage in rats (Prevent)

Dehydroabietylamine,
Carthamus tinctorious

Ó AST, ALT, ALP;
antioxidation [186]

26104



Int. J. Mol. Sci. 2015, 16, 26087–26124

Table 5. Cont.

Model
(Prevent/Treatment) Antioxidant/Plant Effects Dose/(Dose–Effect) Bioactive Compounds References

CCl4-induced liver
damage in rats (Prevent) Artemetin, Vitexglabrata

Ò SOD, CAT, GSH-Px; Ó
AST, ALT, ALP, lipid

peroxidation, TB
[187]

CCl4-induced liver
damage in mice (Prevent) Blueberry anthocyanins

Ò SOD, CAT, GRD,
glycogen; Ó AST, ALT,

MDA
[188]

CCl4-induced liver
damage in rats (Prevent) Matricaria chamomilla Ò SOD, CAT, GSH-Px,

GSH; Ó AST, ALT, MDA
50, 100 and 200 mL/kg
b.w. (No dose–effect) [189]

CCl4-induced liver
damage in mice (Prevent) Lysimachia clethroides Ò SOD; Ó AST, ALT, MDA 150, 300 and 600 mg/kg

b.w. (No dose–effect) [190]

CCl4-induced liver
damage in rats (Prevent) Garcinia indica fruit rind

Ò SOD, CAT, GRD,
GSH-Px, GSH; Ó AST,

ALT, MDA

400 and 800 mg/kg b.w.
(No dose–effect) [191]

CCl4-induced liver
damage in rats (Prevent) Agaricus blazei Ò GSH, GRD; Ó AST, ALT,

MDA 500 mg/kg b.w. [192]

CCl4-induced liver
damage in rats (Prevent) Nerium oleander flowers Ò SOD; Ó AST, ALT, ALP,

MDA
100, 200 and 400 mg/kg

b.w. (No dose–effect) [193]

CCl4-induced liver
damage in rats (Prevent) Hybanthus enneaspermus Ó AST, ALT, ALP, TB;

antioxidation
200 and 400 mg/kg b.w.

(No dose–effect) [194]

CCl4-induced liver
damage in mice

(Treatment)

Anthocyanins in black
rice bran

Ò SOD, GSH-Px;
hepatoprotection

200, 400 and 800 mg/kg
b.w. (No dose–effect) [195]

CCl4-induced liver
damage in rats (Prevent) Roureainduta

Ò SOD, CAT, GSH,
GSH-Px; Ó AST, ALT,

total bilirubin;
500 mg/kg b.w. [196]

CCl4-induced liver
damage in rats (Prevent)

Proanthocyanidins
extracted from grape

seeds

Ò SOD, GSH, GSH-Px,
CAT; Ó lipid

accumulation, liver
injury, DNA damage

400 mg/kg b.w. Proanthocyanidins [197]
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Table 5. Cont.

Model
(Prevent/Treatment) Antioxidant/Plant Effects Dose/(Dose–Effect) Bioactive Compounds References

CCl4-induced liver
damage in mice (Prevent) Veronica ciliata Ò SOD, GSH; Ó ALT, AST,

ALP
150, 300 and 600 mg/kg

b.w. (No dose–effect) [198]

CCl4-induced liver
damage in rats (Prevent) Subereamollis

Ò SOD, GSH, GSH-Px,
CAT; Ó ALT, AST, ALP,

MDA

100, 200 and 400 mg/kg
b.w. (No dose–effect) [199]

CCl4-induced liver
damage in rats (Prevent)

Solanum xanthocarpum
leaves

Ò SOD, CAT, GSH, GST; Ó
ALT, AST, ALP, LDH

100 and 200 mg/kg b.w.
(No dose–effect) [200]

CCl4-induced liver
damage in rats (Prevent) Allopurinol

Modulation of NF-κB,
cytokine production and

oxidative stress
50 mg/kg b.w.

CCl4 and H2O2 induced
liver damage in goat

(Prevent)

Ocimumbasilicum,
Trigonellafoenum-graecum Antioxidation [201]

TAA-induced liver injury
(Prevent) Genistein Ò GSH; ÓMDA, ALT,

AST, TB
0.5, 1.0 and 2.0 mg/kg
b.w. (No dose–effect) [202]

TAA-Induced liver
Cirrhosis in rats (Prevent)

Andrographis paniculata
Leaf

Hepato-protection, Ó
ROS, LDH

250 and 500 mg/kg b.w.
(No dose–effect) [203]

TAA-induced
hepatotoxicity in rats

(Prevent)
coriander Antioxidant; Ó ALT, AST,

ALP, TBARS, MPO, NO Phenolic compounds [204]

TAA-induced fibrosis in
mice (Treatment) Ger-Gen-Chyn-Lian-Tang

Antioxidant; anti-fibrosis;
modulation on

TGF-β/TGF-β receptor
signaling

100 and 300 mg/kg b.w.
(Dose–effect) [205]

TAA-induced
hepatotoxicity in rats

(Treatment)
Trigonella foenum-graecum

Antioxidant;
hepato-protection; Ó ALP,

MDA
[206]

TAA-induced
hepatotoxicity in rats

(Treatment)
Allopurinol

Regulating cellular
redox-sensitive

transcription factors
[163]
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Table 5. Cont.

Model
(Prevent/Treatment) Antioxidant/Plant Effects Dose/(Dose–Effect) Bioactive Compounds References

Cigarette smoke-induced
oxidative damage in liver

of rats (Treatment)
Sesbania grandiflora leaves

Ò SOD, GSH, GSH-Px,
CAT, GST, GRD,

glucose-6-phosphate
dehydrogenase; Ó AST,

ALT, ALP

1000 mg/kg b.w. [207]

Cigarette smoking
induced oxidative

damage in liver of mice
(Prevent)

Vitamin E and selenium Ò GSH-Px, Se-GSH-Px [208]

Atrazine exposure rats
(Prevent) Vitamin E Ò SOD, GSH-Px, CAT,

GST; Ó lipid peroxidation [209]

Methidathion-induced
liver injury in rats

(Prevent)
Vitamins C and E Ó AST, ALT, ALP, MDA;

Vitamin E: 50 mg/kg
b.w.;Vitamin C: 20 mg/kg

b.w.
[210]

Pesticide (chlorpyriphos
and cypermethrin)

induced hepatic damage
in mice (Prevent)

Black tea
Ò SOD, GSH, GSH-Px,

CAT, GRD, GST; Ó AST,
ALT, ALP

200 mg/mL b.w. [211]

Polychlorinated
biphenyls induced

hepatic damage in rats
(Prevent)

α-Tocopherol Antioxidation 50 mg/kg. b.w. [212]

Aflatoxin-induced
hepatic injury in rats

(Prevent)
Urticadioica seed

Ò SOD, GSH-Px, CAT,
GRD, GST; Ó lipid

peroxides, hydroxyl
radical and hydrogen

peroxides

2 mL/rat/day [213]

Thioacetamide-induced
hepatic damage in rats

(Prevent)
eugenol

Ò COX-2; Ó AST, ALT,
ALP, bilirubin, CYP2E1,

lipid peroxidation;
antioxidation

10.7 mg/kg b.w. [214]
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Table 5. Cont.

Model
(Prevent/Treatment) Antioxidant/Plant Effects Dose/(Dose–Effect) Bioactive Compounds References

Lead-induced liver
damage in rats (Prevent) Ginger Ò SOD, CAT; ÓMDA 100 mg/kg b.w. [215]

Dimethylnitrosamine-induced
hepatic damage in rats

(Prevent)

Anthocyanins from
purple sweet potato

Ò Nrf2, NADPH, GSH,
GST; Ó yclooxygenase-2,

MDA

50, 100 and 200 mg/kg
b.w. (No dose–effect) Anthocyanins [151]

Cadmium-induced
hepatic injury in rats

(Prevent)

Heated garlic juice,
ascorbic acid

Ò Nrf2, SOD, CAT; Ó
MDA

Heated garlic juice: 100
mg/kg b.w.; Ascorbic
acid: 100 mg/kg b.w.

Ascorbic acid [152]

Potassium
bromate-induced

hepatotoxicity of rat
(Prevent)

Launaea procumbens Ò SOD, CAT, GSH,
GSH-Px, GRD, GST 200 mg/kg b.w. [216]

Dimethylnitrosamine
induced liver fibrosis in

rats (Prevent)
Platycodi radix root

Ò Nrf2, heme
oxygenase-1, NADPH,

NQO1, GST; Ó ALT, AST;
anti-fibrotic action

200 mg/kg b.w. Changkil [153]

As2O3-induced
hepatotoxicity in cat

(Prevent)
Resveratrol Ò GSH; Ó ROS, MDA 3 mL/kg b.w. [217]

Sodiumarsenite induced
liver damage in rats

(Prevent)
Emblica officinalis Antioxidation 500 mg in 0.1 mL water,

100 g b.w. [218]

Trichloroacetic acid
induced liver injury in

rats (Prevent)
Date palm fruit Ò SOD, CAT, GSH-Px; Ó

MDA
0.5 and 2 g/L b.w.
(No dose–effect) [219]
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Table 6. Effects of some antioxidants/plants on other related liver disease.

Stress
(Prevent/Treatment) Antioxidant/Plants Effects Dose (Dose–Effect) Bioactive Compounds References

Human liver cancer
cell line Morinda pubescens leaves Antioxidation,

cytotoxicity

25, 50, 100 and
250 µg/mL b.w.

(Dose–effect)
Hyoscyamine [220]

Liver cancer of rats
(Prevent) Chlorella vulgaris Antioxidation,

antitumour
50, 150 and 300 mg/mL

b.w. (Dose–effect) [221]

Hepatocellular carcinoma Caesalpinia bonducella
leaves

Ò SOD, GSH, CAT; Ó
MDA, AST, ALT, ALP;

anticancer
Flavonoids, triterpenoids [222]

Liver cancer of mice
(Prevent)

Pleurotus pulmonarius
(edible mushroom) Antioxidation, anti-tumor [158]

Rat with secondary
biliary cirrhosis (Prevent) Silybin Antioxidation 0.4 g/kg b.w. [223]

Cholestatic rats with bile
duct ligation (Treatment) Green tea catechin Antioxidation, reducing

hepatic fibrosis 50 mg/kg b.w. [161]

Bile duct-ligated
cholestatic rats

(Treatment)
Epigallocatechin-3-gallate

Anti-fibrotic effects, Ó
phosphorylation of
Smad2/3 and Akt

5 mg/kg b.w. [224]

Bile duct-ligated
cholestatic rats

(Treatment)
Holothuria arenicola Ò SOD, GSH, GST, CAT; Ó

MDA, AST, ALT, ALP 200 mg/kg b.w.

Phenolic compounds,
chlorogenic acid,
pyrogallol, rutin,

coumaric acid

[225]
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Table 6. Cont.

Stress
(Prevent/Treatment) Antioxidant/Plants Effects Dose (Dose–Effect) Bioactive Compounds References

Bile-duct ligated Rats
(Treatment) Garlic

Ò GSH; Ó LDH, TB, MDA,
MPO; Ó TNF-α, TGF-β,

MMP-13
[226]

Bile-duct ligated Rats
(Treatment) thymoquinone Ò SOD, GSH-Px; ÓMDA 50 mg/kg b.w. [227]

Bile-duct ligated Rats
(Treatment) N-acetylcysteine Ò GSH, CAT; ÓMDA, ALT 300 mg/kg b.w. [228]

Bile-duct ligated Rats
(Prevent) Phaseolus trilobus Ò SOD; Ó AST, ALT, ALP,

LDH, TB, TBARS;
125, 250 and 500 mg/kg

b.w. (Dose–effect) [229]

Bile-duct ligated Rats
(Treatment) Melatonin Ó TBARS, MPO 10 and 100 mg/kg b.w.

(Dose–effect) [230]

Ischemia/reperfusion in
obese rats with fatty liver Melatonin

Ò Antioxidant enzymes; Ó
AST, ALT, MAD, NOx

metabolites
10 mg/kg b.w. [231]

Bile-duct ligated Rats
(Treatment) Allopurinol Ó ROS, brain edema 100 mg/kg b.w. [232]

Restraint stress-induced
liver injury in mice

(Prevent)

Astragali radix and Salviae
radix

Antioxidation,
hepatoprotection

50, 100 and 200 mg/kg
b.w. (No dose–effect) Myelophil [233]
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4. Current Anti-Oxidative Therapy in Clinical Trials

Clinical trials are extremely vital and indispensable for the development of anti-oxidative
therapy. We looked up the related information of current anti-oxidative therapy in clinic at
http://www.ClinicalTrials.gov website. Vitamins, especially vitamin E, are the most frequently
studied antioxidant as dietary supplement in clinical trials for liver disease, primarily in phase
2/3. Some other nutritional antioxidants such as zinc and Coenzyme Q10 were studied in phase 2.
Compounds including silymarin, metadoxine, N-acetylcystein, propofol, and mitoquinone mesylate,
which partially act as antioxidant, have been used as drugs or supplement for liver disease. Some of
them, such as silymarin, metadoxine and N-acetylcysteine, are studied for NAFLD or NASH or ALD
in phase 4. For example, the application of antioxidants supplement consisted of siliphos, selenium,
methionine, and alpha lipoic acid has been approved in patients with fatty liver and non-alcoholic
steatohepatitis in Mexico. Plants and foods such as ginger, green tea extract, and chocolate have
been adopted as food supplement for their anti-oxidative properties for liver disease. Furthermore,
quercetin and resveratrol, two well-known bioactive compounds isolated from plants, have been
studied as food supplement as antioxidants for liver disease in phase 3. Despite certain promising
results have obtained in clinical trials, anti-oxidative therapy still has a long way to go. As a matter
of fact, many antioxidants are highly effective for prevention or treatment in animal models, but
in humans it does not appear to be effective for the treatment of established disease. For example,
anti-TNF, which shows desirable treatment effects in animal model, appears not to be effective in
patients with acute alcoholic hepatitis. Therefore, translational research is highly important for the
application of antioxidant therapy in clinic. In the future, natural plants and bio-active compounds
isolated from plants as well as endogenous antioxidants such as melatonin, which have shown
strong anti-oxidative ability and hepato-protection effects, should be studied by clinic trials with
large patient samples and longer duration time.

5. Conclusions and Prospects

Anti-oxidative therapy, mainly using natural and synthetic antioxidants, represents a reasonable
therapeutic approach for the prevention and treatment of liver diseases due to the role of oxidative
stress in contributing to initiation and progression of hepatic damage. However, although concept of
anti-oxidative therapy has been raised for decades and intensive efforts have been paid, there is a long
way to go for the application of antioxidants in liver disease. In current clinical trials, mechanisms by
which drugs or compounds treat liver disease might partly attribute to anti-oxidative ability, but plain
antioxidants mainly used as dietary supplement to prevent the progress of disease or improve the
outcome of patients might also be effective. The complex role of oxidative stress in physiological and
pathological processes, lacking studies of underlying mechanisms in humans, and other difficulties
in translational research are challenges ahead. In current studies, intervention of antioxidants is
explored widely in prevention models rather than treatment model, without elaborated underlying
mechanism investigation. For natural plants study, the dose used, especially content of antioxidants,
is always blurry, not to mention the shift dose for humans. For those studies in which dose–effect
has been investigated, only small portion of plants antioxidant showed dose–effect manner for
reducing liver injury, suggesting the complex role of oxidative stress in pathogenesis. In animal study,
antioxidants are given to animals via oral or intraperitoneal injection. The route of administration is
also an influence for absorption and bio-availability of antioxidants. Additionally, since liver is a
central organ for metabolism, oxidative stress in liver diseases interacts with many other diseases
such as kidney failure and diabetes, certain models in animal study should be improved. These
limitations in current study might result in antioxidants that showed desirable effects for prevention
or treatment in animal models, but in humans they do not appear to be effective for the treatment
of established disease, which is a barrier for the development of anti-oxidative therapy in clinic.
Therefore, translational research is of great importance for anti-oxidative therapy. Considering ROS
and oxidative stress act positively in certain circumstances and the difference between animals and
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humans, the effective dose and safe dose, duration of treatment, absorption and bio-availability of
antioxidants require thorough investigation. Furthermore, in the future, large-scale samples and
appropriate duration of anti-oxidative treatment for liver diseases should be performed.
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Abbreviations

AC Autoimmune cholestatic liver diseases
ADH Alcohol dehydrogenase
AIH Autoimmune hepatitis
ALD Alcoholic liver disease
ALP Alkaline phosphatase
ALT Alanine transaminase
ALDH Aldehyde dehydrogenases
ARE Antioxidant response element
AST Aspartate aminotransferase
BHA Butylated hydroxyanisole
bw Body weight
CAT Catalase
CCl4 Carbon tetrachloride
ER Endoplasmic reticulum
GSH-Px Glutathione peroxidase
GSH Glutathione
GRD Glutathione reductase
GST Glutathione S-transferase
HDL High density lipoprotein
HCV Hepatitis C virus
IL-6 Interleukin 6
INH Anti-tuberculosis agent isoniazid
iNOS Inducible nitric oxide synthase (iNOS)
INrf2 Inhibitor of Nrf2
IKKβ IκB kinase-β
IRS Insulin receptor substrate
JNK c-Jun N-terminal kinases
Keap1 kelch-like ECH-associated protein-1
LDH lactate dehydrogenase
LDL Low density lipoprotein
MDA Malondialdehyde
MEOS Microsomal ethanol oxidizing system
NADPH Nicotinamide adenine dinucleotide phosphate-oxidase
NAFLD Non-alcoholic fatty liver disease NAFLD
NO Nitric Oxide
NQO1 NAD(P)H Dehydrogenase, Quinone 1
Nrf1 Nuclear respiratory factor 1
Nrf2 Erythroid 2-related factor 2
PKC protein kinase C
PPARα Peroxisome proliferator activated receptor α
RNS Reactive nitrogen species
ROS Reactive oxygen species (ROS)
SOD Superoxide dismutases
TAA Thioacetamide
TB Total bilirubin
TBARS Thiobarbituric acid-reactive substances
TNF Tumor necrosis factor
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