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Supplementary Note 1 

Network proximity of drug-disease pairs. Given the set of drug targets, X, and 

the set of disease proteins, Y, we first calculate the shortest path length d(x,y) 

between nodes x and y in the human protein-protein interactome, leading to the 

"closest" distance measure: 

𝑑(𝑋, 𝑌) = 	 )
‖+‖

∑ 𝑚𝑖𝑛0∈2𝑑(𝑥, 𝑦)5∈+ .                (1) 

The significance of this measure is evaluated by comparing to the reference 

distance distribution corresponding to the expected network topological distance 

between two randomly selected groups of proteins matched to size and degree 

(connectivity) distribution as the original disease proteins and drug targets in the 

human interactome. This procedure was repeated 1,000 times. The mean distance 

(𝑑) and standard deviation (𝜎7) of the reference distribution were used to calculate 

a z-score (z) by converting an observed closest distance to a normalized distance 

as below. 

𝑧 = 797
:;

                (2) 

We calculate the z-score between drugs and diseases by randomly sampling 

both sets of nodes (drug targets and disease proteins) at the same time. The 

detailed description for z-score calculation was provided in the previous study1. 

The toolbox package for z-score calculation is available at 

github.com/emreg00/toolbox. 
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Supplementary Note 2 

To build a comprehensive human protein-protein interactome, we assembled data 

from a total of 15 bioinformatics and systems biology databases with multiple 

experimental evidences. Specifically, we focused on high-quality protein-protein 

interactions (PPIs) with five types of experimental evidences: (i) Binary PPIs tested 

by high-throughput yeast-two-hybrid (Y2H) systems: we combined binary PPIs 

tested from two public available high-quality Y2H datasets2,3 and one unpublished 

dataset, publicly available at: http://ccsb.dana-farber.org/ interactome-data.html; (ii) 

Kinase-substrate interactions by literature-derived low-throughput and high-

throughput experiments from KinomeNetworkX4, Human Protein Resource 

Database (HPRD)5, PhosphoNetworks6,7, PhosphositePlus8, dbPTM 3.09, and 

Phospho. ELM10; (iii) Literature-curated PPIs identified by affinity purification 

followed by mass spectrometry (AP-MS), Y2H and by literature-derived low-

throughput experiments from BioGRID11, PINA12, HPRD5, MINT13, IntAct14, and 

InnateDB15; (iv) High-quality PPIs from protein three-dimensional (3D) structures 

reported in Instruct16; (v) Signaling network by literature-derived low-throughput 

experiments as annotated in SignaLink2.017. The genes were mapped to their 

Entrez ID based on the NCBI database18 as well as their official gene symbols 

based on GeneCards (http://www.genecards.org/). Duplicated pairs were removed. 

In this study, all inferred data, including evolutionary analysis, gene expression 

data, and metabolic associations, were excluded. The resulting updated human 
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interactome used in this study includes 243,603 PPIs connecting 16,677 unique 

proteins (Supplementary Data 1), offering over 40% increase in size compared to 

our previously used human interactome19. 

 

Supplementary Note 3 

Collecting gold-standard pairwise drug combinations. Drug Combination 

DataBase (DCDB). DCDB is a manually curated database containing drug 

combination information from approximately 14,000 clinical studies20. DCDB (v2.0) 

contains 1,363 clinically reported drug combinations for 904 distinctive 

components20. 

Therapeutic Target Database (TTD). TTD is a comprehensive database providing 

the drug, target, and drug-target pathway information for facilitating drug 

discovery21. Current TTD (v5.1.01) includes 72 pharmacodynamically synergistic, 

14 additive, and 4 antagonist combinations21. 

FDA Electronic Orange Book. FDA electronic orange book 

(http://www.accessdata.fda.gov/scripts/cder/ob/default.cfm) contains FDA-

approved drug products, including drug combination information based on the 

basis of safety and effectiveness by the Federal Food, Drug, and Cosmetic Act. 

Literatures. We manually collected experimentally validated or clinically reported 

drug combination information from the literatures and publicly available sources 
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(Drugs.com and eMedExpert [http://www.emedexpert.com/]) for several complex 

diseases, including hypertension22-24, type-2 diabetes25-27, and cancer28-32. 

In this study, we focus on pairwise drug combinations by assembling the 

clinical data from the abovementioned data sources. In addition, each drug in 

combinations was required to have the experimentally validated target information: 

each EC50, IC50, Ki, or Kd ≤ 10 µM. Compound name, generic name or commercial 

name of each drug was standardized by MeSH and UMLS vocabularies33 and 

further transferred to DrugBank ID from the DrugBank database (v4.3)34. 

Duplicated drug pairs were removed. In total, 681 unique pairwise drug 

combinations connecting 362 drugs were retained (Supplementary Data 3). 

 

Supplementary Note 4 

Collecting disease-association genes. We integrated disease-gene annotation 

data from 8 bioinformatics data sources as described below. 

OMIM: The OMIM database (Online Mendelian Inheritance in Man: 

http://www.omim.org/)35 is a comprehensive collection covering literature-curated 

human disease genes with various high-quality experimental evidences. 

CTD: The Comparative Toxicogenomics Database (http://ctdbase.org/)36 provides 

information about interactions between chemicals and gene products, and their 

association with various diseases. Here, only manually curated gene-disease 
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interactions from the literatures were used. 

ClinVar: ClinVar is a public archive of relationships among sequence variation and 

various human phenotypes (https://www.ncbi.nlm.nih.gov/clinvar/)37. Here, only 

clinically significant relationships among variants and cardiovascular phenotypes 

annotated in ClinVar were used. 

GWAS Catalog: The NHGRI-EBI Catalog of published genome-wide association 

studies (GWAS: https://www.ebi.ac.uk/gwas/)38 provides unbiased SNP-disease 

associations with genome-wide significance. Here, data were downloaded from 

the website: https://www.ebi.ac.uk/gwas/ (access in December 2015) and a SNP 

on a specific disease with a genome-wide significance (p <5.0×10-8) was used. 

GWASdb: GWASdb includes a more comprehensive data curation and knowledge 

integration for SNP-trait associations from GWAS for PubMed and other 

resources39. Here, the curated moderate SNP-disease associations (p <1.0×10-3) 

annotated in GWASdb were used. 

PheWAS Catalog: PheWAS Catalog contains SNP-trait associations identified by 

the phenome-wide association study (PheWAS) paradigm within electronic 

medical records, an unbiased approach to replication and discovery that 

interrogates relationships between targeted genotypes and multiple phenotypes40. 

Here, the SNP-disease associations at phenome-wide significance (p <0.05) were 

downloaded from the PheWAS Catalog website: phewas.mc.vanderbilt.edu. 

HuGE Navigator: HuGE Navigator is an integrated disease candidate gene 
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database based on the core data from PubMed abstracts using text mining 

algorithms41. Here, the literature-reported disease-gene annotation data with 

known PubMed IDs from HuGE Navigator were used. 

DisGeNET: DisGeNET is a comprehensive database for collecting disease-

associated genes42. In 2015, DisGeNET contained over 380,000 associations 

connecting over 16,000 genes and 13,000 diseases by integrating expert-curated 

databases and text-mining data. Here, only expert-curated data were used. 

We assembled disease-gene annotation data from 8 different resources and 

excluded the duplicated entries. We annotated all protein-coding genes using gene 

Entrez ID, chromosomal location, and the official gene symbols from the NCBI 

database18. Each cardiovascular event was defined by Medical Subject Headings 

(MeSH) and Unified Medical Language System (UMLS) vocabularies 

(https://www.nlm.nih.gov/mesh/MBrowser.html)33. In this study, we constructed 

disease-associated genes for 4 types of cardiovascular events: arrhythmia (MeSH 

ID: D001145), heart failure (MeSH ID: D006333), myocardial infarction (MeSH ID: 

D009203), and hypertension/high blood pressure (MeSH ID: D006973). The 

detailed description of disease-gene annotation data integration from different data 

sources is provided in our previous study19. 
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Supplementary Note 5: Permutation tests 

A permutation test, also called a randomization test, is a standard test to compute 

statistical significance43. The null hypothesis of the permutation test is generated 

by counting all possible values of the test statistic under rearrangements of the 

true labels (e.g., experimentally validated drug combinations or clinically reported 

adverse drug-drug interactions) on the shuffled data points (all possible drug pairs). 

Specifically, the statistical significance is given by: 

𝑃 =	 #{?@(A)B?@}
#{DEDFG	AHIJKDFDLEMN}

                (3) 

A nominal P is computed for each network configuration (P1-P6) by counting the 

number of shuffled differences (𝑆J) more than true difference (𝑆J(𝑝)). For the 

“drug combinations” column in Fig. 2, we collected in total 65 hypertensive drug 

combinations from three types of experimental evidence: (i) FDA-approved 

evidence, (ii) data from the Clinicaltrials.gov database, and (iii) Preclinical studies 

from the literature (Supplementary Data 3). When quantifying the network-based 

relationship between two drug-target modules and a disease module (drug-drug-

disease combinations), we find that there is only one hypertensive drug 

combination in the Overlapping Exposure category (Fig. 2a) while 59 combinations 

fall into the Complementary Exposure category (Fig. 2b). We randomly selected 

approximately 70 from all possible drug pairs and we performed 10,000 
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randomizations. For these 10,000 randomizations, 9,875 randomizations have 

more than one drug pair in the Overlapping Exposure category (p-value = 0.9875), 

while no randomization has more than 59 drug pairs in the Overlapping Exposure 

category (p-value = 0/10000 [<10-4]). We performed the same permutation test for 

Fig. 2 and Supplementary Figs. 10-12. For Fig. 2, to keep the same number of 

adverse drug interactions with known hypertensive drug combinations, we 

randomly selected approximately 70 adverse drug-drug pairs from 1,512 adverse 

drug-drug pairs related to high-blood pressure, using a bootstrapping algorithm in 

R software (https://cran.r-project.org/). We repeated this randomization process 

100 times and provided the error bars (standard deviation) in the “adverse drug 

interactions” column of Fig. 2. 
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Supplementary Figures 

 

 

Supplementary Fig. 1 Proof-of-concept of identifying new drug combinations in the human 

protein-protein interactome. Based on the network pharmacology hypothesis44, drug target 

proteins (representing nodes within cellular networks) are often intrinsically coupled to both 

therapeutic and adverse effects. (a) Traditional “magic bullet” drugs that design maximally 

selective ligands to target a single disease protein have attributed to a significant decrease in 

pharmaceutical research and development productivity due to lack of efficacy or toxicity 

effects44. (b) Drug combinations that show partial inhibition of a small set of disease proteins 

(i.e., the disease module) have been recognized to be more efficient than “magic bullet” drugs 

in monotherapies45. In this study, we hypothesize that quantifying the relationship between 

drug targets and disease proteins in the human interactome may lead to rational, network-

based drug combination design strategies. 
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Supplementary Fig. 2 Distribution of drug degree (connectivity) in the drug-target interaction 

bipartite network. Histogram showing the number of targets (The average number of targets 

(degree) is approximate 3) for 4,428 FDA-approved or clinically investigational drugs that have 

at least one targets with the known experimental evidence (Supplementary Data 2). 

Histogram was illustrated based on Log2 scale. 
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Supplementary Fig. 3 Network-based discrimination of drug-drug relationships by using the 

z-score (Supplementary Note 1) to quantify the network distance of drug targets in the human 

interactome. Curves showing the discrimination of clinically reported adverse drug-drug 

interactions (yellow, a), or FDA-approved or experimentally validated beneficial combinations 

(green, b) comparing to the randomly selected (not yet reported) drug pairs. Gray lines show 

the distribution of the same portion of randomly selected drug pairs as adverse drug-drug 

interactions or drug combination pairs. The gray range indicates the standard deviation over 

200 random simulations. 
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Supplementary Fig. 4 Comparison of network separation vs. target set-overlap approach. (a 

to d) The interplay between target-set overlapping and the network-based relationships 

between drug pairs. (a) The relationship between target sets of drugs A and B is captured by 

the overlapping coefficient 𝐶 =	 |𝐴	 ∩ 𝐵|/min	(|𝐴|, |𝐵|)	and the Jaccard-index 𝐽 = 	 |𝐴	 ∩ 𝐵|/

	|𝐴 ∪ 𝐵| . Approximately 96.8% (1,892,455/1,955,253) of drug pairs do not share targets 

(J=C=0); hence, their relationships cannot be identified via the shared targets (target-set 

overlapping approaches). (b) Distribution of network separation (s-score) for drug pairs without 

shared targets. We find that 246,321 (12.6%) drug pairs have overlapping modules (sAB < 0), 

despite having disjoint target sets. (c) The distribution of sAB for drug pairs with complete target 

overlapping (C=1) reveals a diversity of network-based relationships, including 1,603 

separated drug modules (sAB > 0). (d) Fold change of the number of shared targets compared 

to random expectation vs. for all drug pairs. 1,892,455 (96.8%) drug pairs without shared 

targets are highlighted with red background. For that shared at least one target, the target-

overlap is larger than expected by chance. Interestingly, 17,198 drug pairs with shared targets 

are separated (sAB > 0) in the human interactome network. Furthermore, a considerable 

number of 246,321 (12.6%) drug pairs without shared targets reveal detectable network 

overlap (sAB < 0). Fold-change <1 indicates depletion (i.e., fewer common targets than 

expected), whereas fold-change >1 indicates enrichment as described in our previous study 

(Menche et al., Science 2015). 
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Supplementary Fig. 5 Network-based separation is independent from common targets 
shared by drug pairs. (a) Chemical, biological, functional, and clinical similarities for the 
overlapping drug pairs (sAB < 0) vs. the separated drug pairs (sAB ≥ 0) among all drug pairs 
with or without shared targets. (b) The same as (a) for drug pairs that do not share common 
targets (J=0 and C=0 in Supplementary Fig. 4a). Error bars indicate the standard deviation. 
The P is calculated by one-sided Wilcoxon signed-rank test. As shown in Fig. 1d, two drugs 
with very negative separation score have very low chemical similarity. A similar observation 
was made for cellular component similarity (Fig. 1h). Here, we find that drug pairs with strong 
separation score (low value) have higher chemical similarity and cellular component similarity. 
The apparent difference in those two measures (Fig. 1d and 1h) out of 7 is merely due to 
fluctuations caused by undersampling. Indeed, less than 0.1% of the data points fall into the 
bins of very negative separation score (s-score [sAB] < -2.0). 
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Supplementary Fig. 6 The interplay between z-scores of drug pairs and five types 
of drug profiles: drug-drug chemical similarity (CHEMICAL SIMILARITY); drug 
target-encoding gene co-expression pattern across human tissues (CO-
EXPRESSION); drug target protein sequence similarity (SEQUENCE 
SIMILARITY);  the Gene Ontology (GO) annotations, we determine for each drug 
how similar its associated target-encoding genes are in terms of their biological 
processes (BIOLOGICAL PROCESS), cellular component (CELLULAR 
COMPONENT), and molecular function (MOLECULAR FUNCTION); and clinical 
(therapeutic) similarity (CLINICAL SIMILARITY) derived from Anatomical 
Therapeutic Chemical Classification Systems codes (see Methods). Overlapping 
drug pairs are highlighted in white background (sAB < 0); topologically separated 
drug pairs are highlighted in blue background (sAB ≥ 0). 
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Supplementary Fig. 7 Validating network proximity-based stratification of drug-drug 

combinations. (a to f) Cartoon diagrams of five different network-based topological distance 

measures: (a) separation, (b) closest, (c) shortest, (d) kernel, and (e) centre (see Methods). 

Both FDA-approved or experimentally validated pairwise drug combinations (green lines, f) 

and clinically reported adverse drug interactions (yellow lines, g) have a higher network 

proximity (low sAB) compared to the same number of random pairs. Gray lines show the 

distribution of the same portion of randomly selected drug pairs as the matching number of 

adverse drug interactions or drug combination pairs. Gray shadow denotes the standard 

derivation over 100 random simulations. The area under the receiver operating characteristic 

curve (AUC) for discrimination of FDA-approved or experimentally validated therapeutic 

combinations (h) and clinically reported adverse drug interactions (i) from the randomly 

selected drug pairs by five different network-based measures. 
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Supplementary Fig. 8 Receiver Operating Characteristic curves for discrimination of FDA-

approved or experimentally validated therapeutic drug combinations (Supplementary Note 3 

and Supplementary Data 1) from the randomly selected drug pairs using chemoinformatics 

and bioinformatics approaches. AUC: The area under receiver operating characteristic curve. 

The description of chemoinformatics and bioinformatics approaches (a-e) is provided in 

Methods. 
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Supplementary Fig. 9 Receiver operating characteristic curves for discrimination of clinically 

reported adverse drug interactions (Supplementary Data 4) from the randomly selected drug 

pairs using chemoinformatics and bioinformatics approaches. AUC: The area under receiver 

operating characteristic curve. The description of chemoinformatics and bioinformatics 

approaches (a-e) is provided in Methods. 
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Supplementary Fig. 10 Network architecture of approved, clinically, or pre-clinically validated 
anticancer drug combinations (Supplementary Data 3). Schematic diagrams of the six 
distinct classes (a-f) capturing the network-based relationship between targets of two drugs 
and disease module proteins (drug-drug-disease). Color histograms (Real) show the validated 
cancer drug combinations across P1-P6. Gray boxes (Random) show random expectation. 
Error bars indicate the standard deviation. The p-value (P) is calculated by testing 10,000 
permutations. The detailed definition of six possible network architectures (a-f) are provided in 
Fig. 2. Cancer is a chronic disease with a strong genetic contribution, rarely caused by adverse 
drug-drug interactions. We illustrated the anticancer drug combinations only. 
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Supplementary Fig. 11 The efficacy of FDA-approved hypertensive drug-drug 
interactions only. a-f, Schematic diagrams of the six distinct classes capturing the 
network-based relationship between two drug-target modules and one disease 
module on a drug-drug-disease combination. Color histograms (Real) show the 
FDA-approved antihypertensive combinations (purple) and clinically reported 
adverse drug interactions on high-blood pressure (blue), respectively. Gray boxes 
(Random) show random expectation. Error bars indicate the standard deviation. 
The p-value (P) is calculated by testing 10,000 permutations. 
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Supplementary Fig. 12 Network architecture of clinically reported adverse drug-drug 
interaction pairs in three cardiovascular outcomes: arrhythmia, heart failure, and myocardial 
infarction. Schematic diagrams of the six distinct classes (a-f) capturing the network-based 
relationship between targets of two drugs and disease module proteins (drug-drug-disease). 
Color histograms (Real) show the clinically reported adverse drug-drug interaction pairs across 
P1-P6. Gray boxes (Random) show random expectation. Error bars indicate the standard 
deviation. The p-value (P) is calculated by testing 10,000 permutations. 
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Supplementary Fig. 13 Receiver operating characteristic curves for predicting new 

hypertensive drug combinations using our network-based model, chemoinformatics, and 

bioinformatics approaches, respectively. In total, 24 FDA approved drug combinations for 

treatment of hypertension (Supplementary Data 3) were used as an external validation set. 

AUC: The area under receiver operating characteristic curve. 
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Supplementary Table 1. Top 30 network-predicted combinations for hydrochlorothiazide 
in treatment of hypertension. 

# Drug A Drug B 
Network 
Proximity 

Network 
Principle 

References 

1 Hydrochlorothiazide Etacrynic acid 0.013 P2 NA 

2 Hydrochlorothiazide Irbesartan 0.054 P2 a&b 

3 Hydrochlorothiazide Guanfacine 0.067 P2 NA 
4 Hydrochlorothiazide Nitrendipine 0.101 P2 46 
5 Hydrochlorothiazide Isradipine 0.110 P2 NA 
6 Hydrochlorothiazide Amlodipine 0.131 P2 a&b 
7 Hydrochlorothiazide Nifedipine 0.140 P2 47 
8 Hydrochlorothiazide Mibefradil 0.277 P2 48 
9 Hydrochlorothiazide Felodipine 0.280 P2 49 

10 Hydrochlorothiazide Nebivolol 0.285 P2 50 
11 Hydrochlorothiazide Nisoldipine 0.300 P2 NA 
12 Hydrochlorothiazide Acebutolol 0.317 P2 a 
13 Hydrochlorothiazide Atenolol 0.317 P2 a&b 
14 Hydrochlorothiazide Captopril 0.329 P2 a 
15 Hydrochlorothiazide Bevantolol 0.362 P2 NA 
16 Hydrochlorothiazide Telmisartan 0.362 P2 b 
17 Hydrochlorothiazide Bosentan 0.400 P2 NA 
18 Hydrochlorothiazide Verapamil 0.415 P2 51 
19 Hydrochlorothiazide Amiloride 0.421 P2 52 
20 Hydrochlorothiazide Prazosin 0.489 P2 53 

21 Hydrochlorothiazide 
Phenoxybenza

mine 
0.535 P2 NA 

22 Hydrochlorothiazide Bethanidine 0.543 P2 NA 
23 Hydrochlorothiazide Nicardipine 0.547 P2 54 
24 Hydrochlorothiazide Phentolamine 0.550 P2 NA 
25 Hydrochlorothiazide Methyldopa 0.567 P2 52 
26 Hydrochlorothiazide Moexipril 0.567 P2 52 
27 Hydrochlorothiazide Spironolactone 0.588 P2 52 
28 Hydrochlorothiazide Bisoprolol 0.695 P2 52 
29 Hydrochlorothiazide Metoprolol 0.695 P2 52 
30 Hydrochlorothiazide Timolol 0.695 P2 52 

Note: In total, 21 predicted ones (70% success rate) are validated by FDA-approved 
evidence, clinical studies from Clinicaltrials.gov, or previously reported preclinical data 

aFDA-approved; bClinicaltrials.gov. NA: There are non-available literature, preclinical, or 
clinical data for the prediction. 
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