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Cell-based therapy, e.g., multipotent mesenchymal stromal cell (MSC) treatment, shows
promise for the treatment of various diseases. The strong paracrine capacity of these cells
and not their differentiation capacity, is the principal mechanism of therapeutic action.
MSCs robustly release exosomes, membrane vesicles (∼30–100 nm) originally derived
in endosomes as intraluminal vesicles, which contain various molecular constituents
including proteins and RNAs from maternal cells. Contained among these constituents, are
small non-coding RNA molecules, microRNAs (miRNAs), which play a key role in mediating
biological function due to their prominent role in gene regulation. The release as well as
the content of the MSC generated exosomes are modified by environmental conditions.
Via exosomes, MSCs transfer their therapeutic factors, especially miRNAs, to recipient
cells, and therein alter gene expression and thereby promote therapeutic response. The
present review focuses on the paracrine mechanism of MSC exosomes, and the regulation
and transfer of exosome content, especially the packaging and transfer of miRNAs which
enhance tissue repair and functional recovery. Perspectives on the developing role of MSC
mediated transfer of exosomes as a therapeutic approach will also be discussed.
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INTRODUCTION
The therapeutic effects of cell-based therapy, such as for the
treatment of stroke, with multipotent mesenchymal stromal cells
(MSCs) have demonstrated particular promise. Systemic admin-
istration of MSCs as a treatment for stroke (Chen et al., 2001a,b;
Li et al., 2001; Chopp and Li, 2002; Hessvik et al., 2013), has
demonstrated that MSCs promote central nervous system (CNS)
plasticity and neurovascular remodeling which lead to functional
benefit (Caplan and Dennis, 2006; Zhang et al., 2006b; Chopp
et al., 2008; Dharmasaroja, 2009; Li and Chopp, 2009; Zhang and
Chopp, 2009, 2013; Borlongan et al., 2011; Herberts et al., 2011).
Instead of the replacement of damaged cells, cell-based therapy
provides therapeutic benefit by remodeling of the CNS, i.e., by
promoting neuroplasticity, angiogenesis and immunomodulation
(Chen et al., 2001b; Chopp and Li, 2002; Chopp et al., 2008; Li and
Chopp, 2009; Zhang and Chopp, 2013; Liang et al., 2014). Early
studies posited that the therapeutic efficacy of transplanted MSCs
was attributed to their subsequent differentiation into parenchy-
mal cells which repairs and replaces damaged tissues. However,
studies in animal models and patients demonstrated that only a
very small number of transplanted MSCs localize to the dam-
age site and surrounding area, while most of the MSCs were
localized in the liver, spleen and lungs (Phinney and Prockop,
2007). In addition, apparent evidence of MSC differentiation
likely resulted from the fusion of transplanted MSCs with endoge-
nous cells (Spees et al., 2003; Vassilopoulos et al., 2003; Konig
et al., 2005; Ferrand et al., 2011). Supported by robust data, our

present understanding of how MSCs promote neurological recov-
ery is through their interaction with brain parenchymal cells.
MSCs produce and induce within parenchymal cells biological
effectors, e.g., neurotrophic factors, proteases, and morphogens,
which subsequently enhance the neurovascular microenviron-
ment surrounding the damaged area, as well as remodel remote
tissue (Chen et al., 2002; Lu et al., 2002; Mahmood et al., 2004;
Gao et al., 2005, 2008; Xin et al., 2006, 2010, 2011, 2013a; Zhang
et al., 2006c, 2009; Qu et al., 2007; Zacharek et al., 2007; Shen
et al., 2008, 2010, 2011b; Xu et al., 2010; Hermann and Chopp,
2012; Ding et al., 2013; Zhang and Chopp, 2013). Though the
mechanisms which underlie the interaction and communication
between the exogenously administered cells, e.g., MSCs, and brain
parenchymal cells are not fully understood, the paracrine effect
hypothesis has been strengthened by recent evidence that stem
cells release extracellular vesicles which elicit similar biological
activity to the stem cells themselves (Lai et al., 2011; Camussi
et al., 2013; Xin et al., 2013b). These released extracellular lipid
vesicles, provide a novel means of intercellular communication
(Raposo and Stoorvogel, 2013; Fujita et al., 2014; Record et al.,
2014; Turturici et al., 2014; Zhang and Grizzle, 2014). A partic-
ularly important class of extracellular vesicles released by stem
cells and MSCs, is exosomes, and accumulating data show that
MSCs release large amounts of exosomes which mediate the com-
munication of MSCs with other cells (Collino et al., 2010; Hass
and Otte, 2012; He et al., 2012; Xin et al., 2012; Lee et al.,
2013; Roccaro et al., 2013; Wang et al., 2014). Here, we focus

Frontiers in Cellular Neuroscience www.frontiersin.org November 2014 | Volume 8 | Article 377 | 1

CELLULAR NEUROSCIENCE

http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/about
http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/journal/10.3389/fncel.2014.00377/abstract
http://community.frontiersin.org/people/u/147516
http://community.frontiersin.org/people/u/71984
mailto:hongqi@neuro.hfh.edu
mailto:HXin1@hfhs.org
http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Xin et al. Exosomes/miRNAs as mediating cell-based therapy of stroke

our discussion on exosomes derived from MSCs, the biogene-
sis of MSC exosomes, cargo packaging (especially the miRNAs)
and intercellular communication, and discuss new opportunities
in modifying exosomal cargo to develop exosome-based cell-free
therapeutics.

CHARACTERISTIC OF EXOSOMES
Lipid vesicles can be released by various types of cells, and they
have been found in the supernatants from a wide variety of cells
in culture, as well as in all bodily fluids (Yang et al., 2014; Yellon
and Davidson, 2014; Zhang and Grizzle, 2014). The shedding of
microvesicles and exosomes is likely a general property of most
cells. Initial studies on cell released vesicles were reported in the
1960s (Roth and Luse, 1964; Schrier et al., 1971; Dalton, 1975),
and the most common term, exosome, as applied to cell-derived
vesicles was first defined by Trams et al. (1981); since they believe
that these “exfoliated membrane vesicles may serve a physiologic
function” and “it is proposed that they be referred to as exosomes”
(Trams et al., 1981), (Box 1, nomenclature).

Extracellular released vesicles mainly include exosomes and
microvesicles (Momen-Heravi et al., 2013). Exosomes are endo-
cytic origin small-membrane vesicles. Eukaryotic cells periodi-
cally engulf small amounts of intracellular fluid in the specific
membrane area, forming a small intracellular body called endo-
some (Thery et al., 2002). The early endosome matures and
develops into the late endosome, during the maturation process,
the inward budding of the endosomal membrane forms the intra-
luminal vesicles (ILV) which range in size from approximately
30–100 nm in diameter. The late endosome containing ILVs is
also referred to as, a multivesicular body (MVB) and proteins
are directly sorted to the MVBs from rough endoplasmic retic-
ulum and Golgi complex (Thery et al., 1999), as are mRNAs,
microRNAs, and DNAs (Villarroya-Beltri et al., 2013). The MVBs
may either fuse with the lysosome and degrade their contents or
fuse with the plasma membrane of the cell, releasing their ILVs
to the extracellular environment (Figure 1). These vesicles are
then referred as exosomes (Van Niel et al., 2006). Microvesicles
are small, plasma membrane derived particles that are released
into the extracellular environment by the outward budding and
fission of the plasma membrane (Amano et al., 2001; Cocucci
et al., 2009; Muralidharan-Chari et al., 2010). Unlike the large
size of microvesicle (100∼1000 nm in diameter), exosomes have a
smaller size, ∼30–100 nm in diameter (Stoorvogel et al., 2002).

Exosome density in sucrose is located at 1.13–1.19 g/ml, and
exosomes can be collected by ultracentrifugation at 100,000 g
(Thery et al., 2006). The exosome membranes are enriched with
cholesterol, sphingomyelin, and ceramide which are contained
in lipid rafts (Thery et al., 2006). Most exosomes contain con-
served proteins such as tetraspanins (CD81, CD63, and CD9),
Alix and Tsg101, as well as the unique tissue/cell type specific
proteins that reflect their cellular source. A precise and clear dis-
tinction between these vesicles (exosomes and microvesicles) is
still lacking, and it is technically difficult to definitively separate
them from the culture media by currently available methods like
ultracentrifugation, density gradient separation, chromatogra-
phy and immunoaffinity capture methods (Corrado et al., 2013).
Exosomes are released by most cell types under physiological
conditions. The amount of exosomes released from MSCs is
highly related to cellular proliferation rate, and the exosome pro-
duction is inversely correlated to the developmental maturity of
the MSCs (Chen et al., 2013b). The release of extracellular vesi-
cles can be altered by cellular stress and damage (Hugel et al.,
2005; Greenwalt, 2006). Increased release of extracellular vesicles
is associated with the acute and active phases of several neuro-
logical disorders (Hugel et al., 2005; Horstman et al., 2007). The
distinctions between exosomes and other extracellular vesicles
(such as microvesicles) are beyond the scope of this review and
will not be discussed in detail here.

MSCs ROBUSTLY RELEASE EXOSOMES
Human MSC conditioned medium can reduce myocardial infarct
size in patients with acute myocardial infarction (Timmers et al.,
2007), and Reduction of myocardial infarct size by human mes-
enchymal stem cell conditioned medium, probably by increasing
myocardial perfusion (Timmers et al., 2011). These therapeutic
effects were then subsequently attributed to MSC derived exo-
somes (Lai et al., 2010). Thereafter, MSC exosomes were widely
observed and tested in several disease models (Lee et al., 2012;
Reis et al., 2012; Xin et al., 2012; Li et al., 2013; Tomasoni et al.,
2013; Sdrimas and Kourembanas, 2014; Tan et al., 2014; Zhu et al.,
2014).

Compared to other cells, MSCs can produce large amounts of
exosomes (Yeo et al., 2013). There are no differences in terms of
morphological features, isolation and storage conditions between
exosomes derived from MSCs and other sources (Yeo et al., 2013).
The MSC is the most prolific exosome producer when compared

Box 1 | Nomenclature.

Currently, the use of the term ‘exosomes’ for MVB-derived extracellular vesicles (EVs) is widely accepted in the field; however, the large
variety of EVs secreted by cells and the technical difficult to definitively discriminate small EVs from exosomes in the culture media
using currently available methods has led to the less stringent usage of the term, exosomes. Exosomes are presently characterized as
either small EVs (of 30–100 nm diameter) measured by transmission electron microscopy (TEM)), or as EVs recovered after 100000g
ultracentrifugation. As Gould and Raposo proposed recently, given the absence of perfect identification of EVs’ of endosomal origin,
researchers are recommended to explicitly state their use of terms, choose their terms based on precedent and logical argument, and
apply them consistently throughout a piece of work (Gould and Raposo, 2013). Since the EVs identified and employed in our studies
fulfill the above mentioned two characteristics (i.e.,TEM and 100000g untracentrifugation), therefore, exosomes are likely the primary
constituents of the EVs. Here, in this manuscript, we use the term ‘exosomes’ as defined by Trams et al. (Trams et al., 1981), however,
we do not exclude the possibility of other non-exosomal microvesicle components within the content of our injected precipitate, and we
do not exclude a contribution of non-exosomal microvesicles to mediating stroke recovery.
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FIGURE 1 | The generation of MSC exosomes and bio-information

shuttling between MSCs and brain parenchymal cells via exosomes.

Exosomes are generated in the late endosomal compartment by inward
budding of the limiting membrane of MVB. The exosome-filled MVBs
are either fused with the plasma membrane to release exosomes or
sent to lysosomes for degradation. Microvesicles are plasma membrane

derived particles that are released into the extracellular environment by
the direct outward budding and fission of the plasma membrane. The
bio-information carried by MSC exosomes then transfer to brain
parenchymal cells like astrocytes and neurons. ILV, intraluminal vesicles;
MVB, multivesicular body; GC, Golgi complex; RER, rough endoplasmic
reticulum.

to other cell types known to produce exosomes (Yeo et al.,
2013). By transfecting human ESC-derived mesenchymal stem
cells (hESC-MSCs) with a lentivirus carrying myc gene, Chen
et al. generated an immortalized hESC-MSCs cell line. Exosomes
from MYC-transformed MSCs were able to reduce relative infarct
size in a mouse model of myocardial ischemia/reperfusion injury.
They found that MYC transformation may be a practical strat-
egy in ensuring an infinite supply of cells for the production of
exosomes in the milligram range as either therapeutic agents or
delivery vehicles. Additionally, the increased proliferative rate by
MYC transformation reduces the time for cell production and
thereby reduces production costs. Chen et al. (2011), thus, mak-
ing MSCs an efficient and effective “factory” for mass production
of exosomes.

THE CARGO OF MSC EXOSOMES
Exosomes are complex “living” structures generated by many cell
types containing a multitude of cell surface receptors (Shen et al.,
2011a; Yang and Gould, 2013), encapsulating proteins, trophic
factors, miRNAs, and RNAs (Koh et al., 2010; Lai et al., 2011,
2012, 2013b; Record et al., 2011; Xin et al., 2012; Chen and Lim,
2013; Katakowski et al., 2013; Tomasoni et al., 2013; Yeo et al.,
2013). These bioactive molecules can mediate exosomal inter-
cellular communication (Zhang and Grizzle, 2014; Zhang and
Wrana, 2014).

The exosome cargo is dependent on the cell type of origin
(Raposo and Stoorvogel, 2013). Besides the common surface
markers of exosomes, such as CD9 and CD81, MSCs contain
specific membrane adhesive molecules, including CD29, CD44,
and CD73 that are expressed on the MSC generated exosomes (Lai
et al., 2012). Further, the specific conditions of cell preparation
affect the exosome cargo (Kim et al., 2005; Park et al., 2010). In the
MSC derived exosome, protein components also changed when
exosomes were obtained from different MSC cultured media. In
their study, Lai et al. found that 379, 432, and 420 unique proteins,
detected by means of liquid chromatography-mass spectrom-
etry/mass spectrometry in three independent batches of MSC
derived exosomes, and only 154 common proteins are present
(Lai et al., 2012). In addition to the protein cargo, RNAs, e.g.,
messenger RNA (mRNA) and miRNAs are encapsulated in MSC
exosomes. MiRNAs encapsulated in MSC-derived microparticles
are predominantly in their precursor form (Chen et al., 2010).
However, other studies have demonstrated that various miRNAs
are present in MSC exosomes, and the miRNA cargo participates
in the cell-cell communication to alter the fate of recipient cells
(Koh et al., 2010; Xin et al., 2012, 2013c; Katakowski et al., 2013;
Lee et al., 2013; Ono et al., 2014).

Environmental challenges, such as activation or stress con-
ditions, influence the composition, biogenesis, and secretion of
exosomes. Possibly, exosome secretion is an efficient adaptive
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mechanism that cells modulate intracellular stress situations and
modify the surrounding environment via the secretion of exo-
somes. By preconditioning (Yu et al., 2013) or genetic manipu-
lation (Kim et al., 2007b) of dendritic cells, the exosome secretion
profile of these cells can be modified. The proteomic profiles of
adipocyte-derived exosomes have been characterized (Sano et al.,
2014). The authors found that protein content of the exosomes
produced from cultured 3T3-L1 adipocytes was changed when
they exposed the cells to hypoxic conditions. Quantitative pro-
teomic analysis showed that 231 proteins were identified in the
adipocyte-derived exosomes, and the expression levels of some
proteins were altered under hypoxic conditions. The total amount
of proteins in exosomes increased by 3-4-fold under hypoxic
conditions (Sano et al., 2014). Another study found that the
miRNA content of dendritic cell exosomes was affected by the
maturation of the cells (Montecalvo et al., 2012), and similarly,
compared with those from control cells, exosomes from mast cells
contain different mRNAs when the cells were exposed to oxida-
tive stress (Eldh et al., 2010). Furthermore, stressed cells that
released exosomes conferred resistance against oxidative stress
to recipient cells (Eldh et al., 2010), suggesting that cells mod-
ulate intracellular stress situations and modify the surrounding
environment via the secretion of exosomes. The MSC exosome
profile can be modified by pretreatment, as well. When MSCs
were in vitro exposed to brain tissue extracted from rats sub-
jected to middle cerebral artery occlusion (MCAo), the miR-133b
levels in MSCs and their released exosomes were significantly
increased compared to MSCs exposed to normal rat brain tissue
extracts (Xin et al., 2012), indicating that MSCs used for stroke
treatment will modify their gene expression and subsequently
affect their exosome cargo. Thus, there is a feedback between the
MSC and its environment, and through which ischemic condi-
tions will modify the exosome contents, and consequently, the
secreted exosomes affect and modify the tissue environment.
Though we only tested one specific miRNA in our study, it is
reasonable to propose that other miRNAs or other cargos of
MSC exosome were modified by the post ischemic condition. i.e.,
other groups also demonstrated that miR-22 in MSC exosomes
were enriched following ischemic preconditioning (Feng et al.,
2014).

MSC DERIVED EXOSOMES TRANSFER BIO-INFORMATION TO
RECIPIENT CELLS VIA miRNA
MiRNAs are non-protein coding, short ribonucleic acid (usually
18–25 nucleotides) molecules found in eukaryotic cells. Via bind-
ing to complementary sequences on target mRNA transcripts,
miRNAs post-transcriptionally control gene expression (Bartel,
2004, 2009). MiRNAs constitute a major regulatory gene fam-
ily in eukaryotic cells (Bartel, 2004; Zhang et al., 2006a, 2007;
Fiore et al., 2008). MiRNAs are master molecular switches, con-
currently affecting translation of, possibly, hundreds of mRNAs
(Cai et al., 2009; Agnati et al., 2010). Over 1000 miRNAs are
encoded by the human genome (Bartel, 2004) and they target
about 60% of mammalian genes (Lewis et al., 2005; Friedman
et al., 2009), and are abundant in many human cell types (Lim
et al., 2003). By affecting gene expression, miRNAs are likely
involved in most biological processes (Brennecke et al., 2003;

Chen et al., 2004; Cuellar and McManus, 2005; Harfe et al.,
2005; Lim et al., 2005). Based on the master gene regulation
role of miRNAs, though MSC exosomes have the potential for
protein cargo transfer (Zhang et al., 2014), we envisage that com-
pared with the delivery of proteins, transfer of miRNA may have
dramatic effects on the network of proteins and RNAs of the
recipient cells.

Exosomes are well suited for small functional molecule deliv-
ery (Zomer et al., 2010). Increasing evidence indicates that they
play a pivotal role in cell-to-cell communication (Mathivanan
et al., 2010) and act as biological transporters (Denzer et al., 2000;
Fevrier and Raposo, 2004; Lotvall and Valadi, 2007; Smalheiser,
2007; Valadi et al., 2007; Mathivanan et al., 2010; Lee et al., 2011;
Record et al., 2011; Von Bartheld and Altick, 2011; Mittelbrunn
and Sanchez-Madrid, 2012; Boon and Vickers, 2013; Raposo
and Stoorvogel, 2013). Importantly, by being encapsulated and
contained within the exosomes, the RNA is protected from the
digestion of RNAase or trypsin (Valadi et al., 2007). Multiple
studies show that exosomes transfer miRNAs to recipient cells
(Valadi et al., 2007; Hergenreider et al., 2012). The transferred
miRNAs then modify the recipient cell’s characteristics. Shimbo
et al. introduced synthetic miR-143 into cells, and the miR-
143 was enveloped in released exosomes (Shimbo et al., 2014).
The secreted exosome-formed miR-143 is transferred to osteosar-
coma cells and subsequently significantly reduced the migration
of osteosarcoma cells (Shimbo et al., 2014). Recent studies show
that MSC exosomes regulate recipient cell protein expression and
modify cell characteristics through the miRNA transfer (Xin et al.,
2012; Lee et al., 2013; Wang et al., 2014). Exosomal transfer of
miR-23b from the bone marrow may promote breast cancer cell
dormancy in a metastatic niche (Ono et al., 2014). The master
gene regulation role of miRNAs encapsulated within exosomes,
determines their major role in the modification of recipient cells.

EXOSOMES SHUTTLE miRNAs AS REGULATORS FOR STROKE
RECOVERY AFTER MSC THERAPY
In the nervous system, exosomes mediate cell-cell communi-
cation including the transfer of synaptic proteins, mRNAs and
microRNAs (Smalheiser, 2007). The role of miRNAs at various
stages of neuronal development and maturation has been recently
elucidated (Costa-Mattioli et al., 2009; Saba and Schratt, 2010;
Olde Loohuis et al., 2012). Numerous miRNAs are expressed
in spatially and temporally controlled manners in the nervous
system (Kapsimali et al., 2007; Bak et al., 2008; Dogini et al.,
2008; Kocerha et al., 2009; Sethi and Lukiw, 2009; Ziu et al.,
2011), suggesting that miRNAs have important functions in the
gene regulatory networks involved in adult neural plasticity (Sethi
and Lukiw, 2009; Liu and Xu, 2011; Mor et al., 2011; Goldie
and Cairns, 2012). Stroke induces changes in the miRNA pro-
file of MSCs and within their released exosomes (Jeyaseelan et al.,
2008; Lusardi et al., 2014), and miRNAs actively participate in the
recovery process after stroke (Liu et al., 2013).

MiR-133b promotes functional recovery in Parkinson’s disease
(Kim et al., 2007a) and appears essential for neurite outgrowth
and functional recovery after spinal cord injury in adult zebra-
fish (Yu et al., 2011). Moreover, miR-133b regulates the expression
of its targets, connective tissue growth factor (CTGF), a major
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inhibitor of axonal growth at injury sites in the CNS in mammals
(White and Jakeman, 2008; Duisters et al., 2009) and down-
regulates Ras homolog gene family, member A (RhoA) protein
expression (Care et al., 2007; Chiba et al., 2009). In our series
of studies, we first found that miR-133b is substantially down-
regulated in rat brain after MCAo, and MSC administration
significantly increased the miR-133b level in the ischemic cere-
bral tissue. When MSCs were exposed to ischemic brain extracts,
the miR-133b level was increased in exosomes released from these
MSCs. We then treated primary cultured neurons and astro-
cytes with these exosomes, and found the miR-133b level in
the neurons and astrocytes were increased, suggesting that the
exosomes mediate the miR-133b transfer from MSCs to the neu-
rons and astrocytes. Further in vitro knockdown of miR-133b
in MSCs directly confirmed that the increased miR-133b level
in astrocytes is attributed to their transfer from MSCs to neural
cells, and exosomal miR-133b from MSCs significantly increased
the neurite branch number and total neurite length (Xin et al.,
2012). Compared with administration of normal MSCs, in vivo
administration of MSCs with increased or decreased miR-133b
(MSCs modified using lentivirus with miR-133b knocked-in or
knocked-down) to rats subjected to MCAo resulted in promo-
tion or inhibition of neurite outgrowth, respectively (Xin et al.,
2012). Correspondingly, in vitro and in vivo, we also observed
the transfer of miR-133b from MSCs to astrocytes via exosomes
down-regulated CTGF expression, which may thin the glial scar
and benefit neurite outgrowth. In contrast, treatment of stroke in
rats with MSCs containing increased miR-133b, inhibited RhoA
expression in neurons which enhanced the regrowth of the cor-
ticospinal tract after injury (Dergham et al., 2002; Holtje et al.,
2009). Down-regulation of CTGF and RhoA by miR-133b stimu-
lated neurite outgrowth and thereby improved functional recov-
ery after stroke (Xin et al., 2012). This proof-of-concept study,
provides the first demonstration that MSCs communicate with
astrocytes and neurons and regulate neurite outgrowth by transfer
of miRNAs (miR-133b) via exosomes. The identification of exo-
somes released from MSCs as a shuttle that carries miR-133b to
astrocytes and neurons after cerebral ischemia helps to explain, at
least in-part, how the exogenous MSCs contribute to neurologi-
cal recovery after stroke. Exosome delivery of functional miRNAs,
e.g., miR-133b, that promote neurite outgrowth may show benefit
in other neurological diseases, in addition to stroke.

EXOSOMES AS AN ALTERNATIVE THERAPEUTIC CANDIDATE OF MSCs
ON STROKE
MSC exosomes serve as a vehicle to transfer protein, mRNA, and
miRNA to distant recipient cells, altering the gene expression of
the recipient cells. Recently, MSC exosomes have been found to
be efficacious in an increasing number of animal models for the
treatment of diseases such as liver fibrosis (Li et al., 2013), liver
injury (Tan et al., 2014), hypoxic pulmonary hypertension (Lee
et al., 2012), acute lung injury (Sdrimas and Kourembanas, 2014;
Zhu et al., 2014), acute kidney injury (Gatti et al., 2011; Reis
et al., 2012; Tomasoni et al., 2013), and cardiovascular diseases
(Lai et al., 2011). We demonstrated that systemic treatment of
stroke with cell-free exosomes derived from MSCs significantly
improve neurological outcome and contribute to neurovascular

remodeling (Xin et al., 2013b). This approach is the first to
consider treatment of stroke solely with exosomes.

Development of gene therapy vehicles for diffuse delivery to
the brain is one of the major challenges for clinical gene therapy.
By using miRNA mimics or antagonists, miRNA-based strate-
gies have recently emerged as a promising therapeutic approach
for specific diseases. However, despite its exciting potential, the
bottleneck of this approach is delivery of miRNA; an opti-
mal delivery system must be found before their clinical appli-
cation. Researchers developed a number of miRNA delivery
systems (Zhang et al., 2013), including liposomes (Lv et al.,
2006), and peptide transduction domain–double-stranded RNA-
binding domain (Eguchi and Dowdy, 2009). However, synthetic
materials which are employed in the above systems, limited their
use. Thus, the advantages of exosomes as delivery systems are
apparent; they only contain biogenic substances and are readily
transferred into target cells, as well as they have potentially wide
utility for the delivery of nucleic acids, and possibly for selectively
targeting cells. We and others have shown that MSCs can act as
“factories” for the generation of exosomes, and that the cargo
within these exosomes, including the miRNAs, may be regulated
by altering the genetic character of the MSCs, e.g., by transfect-
ing the MSCs with specific genes (Zomer et al., 2010; Bullerdiek
and Flor, 2012; Hu et al., 2012; Katakowski et al., 2013; Xin et al.,
2013c). We have also successfully modulated the miRNA content
of the MSC generated exosomes and thereby modulated neu-
rovascular plasticity and neurological recovery from stroke (Xin
et al., 2013c). Given that MSC exosomes promote recovery (Xin
et al., 2013b) and MSCs release exosomes in vivo, we propose
that MSC generated exosomes with enhanced expression of ben-
eficial miRNAs (e.g., miR-133b) may provide improved recovery
benefits.

Another development direction for the exosome treatment
of disease is the targeting of recipient cells. We demonstrate a
significant therapeutic and neuroplasticity effect of systemic exo-
some administration (Xin et al., 2013b). Considering the nano
size of exosomes, they likely enter into the brain (Lakhal and
Wood, 2011). Adhesive molecules are expressed on the exosome
membrane (Clayton et al., 2004), which may facilitate entry
into the brain. Thus, systemic exosome administration may be a
means by which to deliver the active components of cell-based
therapy to the CNS. To improve exosomal targeting, we may
also consider engineering and tailoring cell membrane proteins,
e.g., the engineering of dendritic cells to express an exosomal
membrane protein, Lamp2b, fused to the neuron-specific RVG
peptide3 (Alvarez-Erviti et al., 2011). Alvarez-Erviti et al. demon-
strated effective delivery of functional siRNA into mouse brain
by systemic injection of exosomes, and targeted the exosomes
to neurons (Alvarez-Erviti et al., 2011). These data indicate that
specifically targeting neural cells is feasible by modifying exoso-
mal membrane proteins.

CONCLUSION AND PROSPECTS
Exosomes derived from MSCs, carry, and transfer their cargo
(e.g., miRNAs) to parenchymal cells, and thereby mediate brain
plasticity, and the functional recovery from stroke. For the
intricate blend of paracrine factors needed, exosomes may be ideal
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carriers for treatment of a complicated disease such as stroke.
Specifically modifying the miRNA content of MSC generated
exosomes to modulate the therapeutic response for stroke may
enhance their therapeutic application.

Cell-based therapies are in clinical trials for stroke and other
neurological diseases (Zhou et al., 2013) and there is a robust
literature on the efficacy of cell-based therapies for stroke (Hess
and Borlongan, 2008). However, there are multiple benefits in
transplanting exosomes rather than in transplanting the whole
“factory,” the cell, into the body. In contrast to exogenously
administered cells delivered systemically, exosomes, given their
nano dimension may readily enter the brain and easily pass
through the blood brain barrier (BBB) (Alvarez-Erviti et al., 2011;
Kooijmans et al., 2012; Anthony and Shiels, 2013; Gheldof et al.,
2013; Meckes et al., 2013). Exogenously administered MSCs may
have many adverse effects, i. e. tumor modulation and malignant
transformation. (Herberts et al., 2011; Wong, 2011), and they may
lodge and initially obstruct small vessels in organs (Gao et al.,
2001; Chen et al., 2013a). Exosomes given their min size, in con-
trast, have no vascular obstructive effect, and have no apparent
adverse effects.

One case has been reported where exosomes were used for
treatment for severe acute graft vs. host disease (Kordelas et al.,
2014) in which MSC exosomes did not show any side effects.
Side effects of exosome therapies were also not observed in any of
the tumor vaccination studies which were performed in humans
(Mignot et al., 2006; Viaud et al., 2008). Prion diseases are infec-
tious neurodegenerative disorders linked to the accumulation of
the abnormally folded prion protein (PrP) scrapie (PrPsc) in the
CNS. Once present, PrPsc catalyzes the conversion of naturally
occurring cellular PrP (PrPc) to PrPsc. Recent studies show both
PrPc and PrPsc were actively released into the extracellular envi-
ronment by PrP-expressing cells before and after infection with
sheep prions, respectively, and the release associated with exo-
somes. Even though EV administration appears safe and no side
effects have been observed so far, it should be noted, that exo-
somes may contribute to intercellular membrane exchange and
the spread of prions (Fevrier et al., 2004; Klohn et al., 2013).
Since fetal calf serum is used for in vitro culturing MSCs and
amplifying the exosomes, it may bring the risk of prion disease
spreading by exosomes, but this risk may be carried by in vitro
cultured MSCs as well. However, the risk associated with exosome
therapies is rather low. Table 1 shows the pros and cons of MSCs
based therapy and MSC exosomes based therapy.

Table 1 | Pros and Cons of MSCs based therapy and MSC exosomes

based therapy.

MSCs BASED THERAPY

Pros Living cell; continuously release exosomes or other soluble
factors; potency of differentiation and replacement.

Cons tumor modulation; malignant transformation; lodge and initially
obstruct small vessels in organs.

MSC EXOSOME BASED THERAPY

Pros No vascular obstructive effect; no apparent adverse effects; nano
size ensure it easily pass through BBB.

Cons None at present

Technical issues, such as, purity of exosomes must be
addressed, since the most common isolation protocol with dif-
ferential centrifugation and a sucrose gradient yield a hetero-
geneous product (EL Andaloussi et al., 2013; Lai et al., 2013a).
Methods for mass exosome isolation should also be devel-
oped to reduce costs. For the modified exosome application,
the exosome product needs to be extensively characterized, in
order to assess its biological function and to avoid adverse
effects.
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