+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Conference Proceedings: found
      Is Open Access

      Wearable Haptic Devices for Gait Re-education by Rhythmic Haptic Cueing


      Proceedings of the 32nd International BCS Human Computer Interaction Conference (HCI)

      Human Computer Interaction Conference

      4 - 6 July 2018

      Wearables, Haptics, Long-term, Gait, Rhythm, Neurological, Neuro-physiotherapy

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          This research explores the development and evaluation of wearable haptic devices for gait sensing and rhythmic haptic cueing in the context of gait re-education for people with neurological and neurodegenerative conditions. Many people with long-term neurological and neurodegenerative conditions such as Stroke, Brain Injury, Multiple Sclerosis or Parkinson’s disease suffer from impaired walking gait pattern. Gait improvement can lead to better fluidity in walking, improved health outcomes, greater independence, and enhanced quality of life. Existing lab-based studies with wearable devices have shown that rhythmic haptic cueing can cause immediate improvements to gait features such as temporal symmetry, stride length, and walking speed. However, current wearable systems are unsuitable for self-managed use for in-the-wild applications with people having such conditions. This work aims to investigate the research question of how wearable haptic devices can help in long-term gait re-education using rhythmic haptic cueing. A longitudinal pilot study has been conducted with a brain trauma survivor, providing rhythmic haptic cueing using a wearable haptic device as a therapeutic intervention for a two-week period. Preliminary results comparing pre and post-intervention gait measurements have shown improvements in walking speed, temporal asymmetry, and stride length. The pilot study has raised an array of issues that require further study. This work aims to develop and evaluate prototype systems through an iterative design process to make possible the self-managed use of such devices in-the-wild. These systems will directly provide therapeutic intervention for gait re-education, offer enhanced information for therapists, remotely monitor dosage adherence and inform treatment and prognoses over the long-term. This research will evaluate the use of technology from the perspective of multiple stakeholders, including clinicians, carers and patients. This work has the potential to impact clinical practice nationwide and worldwide in neuro-physiotherapy.

          Related collections

          Most cited references 6

          • Record: found
          • Abstract: found
          • Article: not found

          Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention.

          The proliferation of miniaturized electronics has fueled a shift toward wearable sensors and feedback devices for the mass population. Quantified self and other similar movements involving wearable systems have gained recent interest. However, it is unclear what the clinical impact of these enabling technologies is on human gait. The purpose of this review is to assess clinical applications of wearable sensing and feedback for human gait and to identify areas of future research. Four electronic databases were searched to find articles employing wearable sensing or feedback for movements of the foot, ankle, shank, thigh, hip, pelvis, and trunk during gait. We retrieved 76 articles that met the inclusion criteria and identified four common clinical applications: (1) identifying movement disorders, (2) assessing surgical outcomes, (3) improving walking stability, and (4) reducing joint loading. Characteristics of knee and trunk motion were the most frequent gait parameters for both wearable sensing and wearable feedback. Most articles performed testing on healthy subjects, and the most prevalent patient populations were osteoarthritis, vestibular loss, Parkinson's disease, and post-stroke hemiplegia. The most widely used wearable sensors were inertial measurement units (accelerometer and gyroscope packaged together) and goniometers. Haptic (touch) and auditory were the most common feedback sensations. This review highlights the current state of the literature and demonstrates substantial potential clinical benefits of wearable sensing and feedback. Future research should focus on wearable sensing and feedback in patient populations, in natural human environments outside the laboratory such as at home or work, and on continuous, long-term monitoring and intervention. Copyright © 2014 Elsevier B.V. All rights reserved.
            • Record: found
            • Abstract: not found
            • Article: not found

            Rhythmic Auditory Stimulation in Rehabilitation of Movement Disorders: A Review Of Current Research

              • Record: found
              • Abstract: found
              • Article: not found

              Interventions for coordination of walking following stroke: systematic review.

              Impairments in gait coordination may be a factor in falls and mobility limitations after stroke. Therefore, rehabilitation targeting gait coordination may be an effective way to improve walking post-stroke. This review sought to examine current treatments that target impairments of gait coordination, the theoretical basis on which they are derived and the effects of such interventions. Few high quality RCTs with a low risk of bias specifically targeting and measuring restoration of coordinated gait were found. Consequently, we took a pragmatic approach to describing and quantifying the available evidence and included non-randomised study designs and limited the influence of heterogeneity in experimental design and control comparators by restricting meta-analyses to pre- and post-test comparisons of experimental interventions only. Results show that physiotherapy interventions significantly improved gait function and coordination. Interventions involving repetitive task-specific practice and/or auditory cueing appeared to be the most promising approaches to restore gait coordination. The fact that overall improvements in gait coordination coincided with increased walking speed lends support to the hypothesis that targeting gait coordination gait may be a way of improving overall walking ability post-stroke. However, establishing the mechanism for improved locomotor control requires a better understanding of the nature of both neuroplasticity and coordination deficits in functional tasks after stroke. Future research requires the measurement of impairment, activity and cortical activation in an effort to establish the mechanism by which functional gains are achieved. Copyright © 2011 Elsevier B.V. All rights reserved.

                Author and article information

                July 2018
                July 2018
                : 1-7
                The Open University Milton Keynes, United Kingdom
                © Islam. Published by BCS Learning and Development Ltd. Proceedings of British HCI 2018. Belfast, UK.

                This work is licensed under a Creative Commons Attribution 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                Proceedings of the 32nd International BCS Human Computer Interaction Conference
                Belfast, UK
                4 - 6 July 2018
                Electronic Workshops in Computing (eWiC)
                Human Computer Interaction Conference
                Product Information: 1477-9358BCS Learning & Development
                Self URI (journal page): https://ewic.bcs.org/
                Electronic Workshops in Computing


                Comment on this article