905
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Celebrating 65 years of The Computer Journal - free-to-read perspectives - bcs.org/tcj65

      scite_
       
      • Record: found
      • Abstract: found
      • Conference Proceedings: found
      Is Open Access

      A Customisable Multiprocessor for Application-Optimised Inductive Logic Programming

      proceedings-article
      , ,
      Visions of Computer Science - BCS International Academic Conference (VOCS)
      BCS International Academic Conference
      22 - 24 September 2008
      Application-specific processors, Processor customisation, Inductive Logic Programming
      Bookmark

            Abstract

            This paper describes a customisable processor designed to accelerate execution of inductive logic programming, targeting advanced field-programmable gate array (FPGA) technology. The instruction set and the microarchitecture of the processor are optimised for key operations in logic programming, such as unification and backtracking. Such optimisations reduce external memory access to enable performance comparable to current general-purpose processors, even at much lower clock frequencies. Our processor can be customised to a particular program by excluding unnecessary functional and memory units, and by adapting the size of such units to suit the application. These customisations reduce resource usage while improving performance, and enable accommodating multiple processors on a single FPGA. Such multiprocessor parallelism can be exploited by search-oriented applications in machine learning applications. We find that up to 32 processors can fit on an XC2V6000 FPGA. Using this device, the computational kernel of the machine learning system Progol, when applied to common bioinformatics data sets for learning to identify mutagenesis and protein folds, can yield speedups of up to 15 times over software running on a 2.53GHz Pentium-4 machine. The proposed approach appears promising with the advance of field-programmable technology: the more recent XC4VLX160 device would be capable of supporting up to 65 processors.

            Content

            Author and article information

            Contributors
            Conference
            September 2008
            September 2008
            : 319-330
            Affiliations
            [0001]Imperial College London, 180 Queen’s Gate, London SW7 2AZ, United Kingdom
            Article
            10.14236/ewic/VOCS2008.27
            32eb8279-11ba-40c7-98f4-d995fc15d0fb
            © Andreas Fidjeland et al. Published by BCS Learning and Development Ltd. Visions of Computer Science - BCS International Academic Conference

            This work is licensed under a Creative Commons Attribution 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

            Visions of Computer Science - BCS International Academic Conference
            VOCS
            Imperial College, London, UK
            22 - 24 September 2008
            Electronic Workshops in Computing (eWiC)
            BCS International Academic Conference
            History
            Product

            1477-9358 BCS Learning & Development

            Self URI (article page): https://www.scienceopen.com/hosted-document?doi=10.14236/ewic/VOCS2008.27
            Self URI (journal page): https://ewic.bcs.org/
            Categories
            Electronic Workshops in Computing

            Applied computer science,Computer science,Security & Cryptology,Graphics & Multimedia design,General computer science,Human-computer-interaction
            Processor customisation,Application-specific processors,Inductive Logic Programming

            Comments

            Comment on this article