• Record: found
  • Abstract: found
  • Poster: found
Is Open Access

Molecular structure of azobenzene-containing systems from classical MD simulations

ScienceOpen Posters


This work has been published open access under Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Conditions, terms of use and publishing policy can be found at

Stimuli-responsive materials, Azobenzene, Molecular dynamics, Multiscale simulations, Mechanics, Light-induced deformation

Read this article at

      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


      Azobenzene-containing side chain polymers [1,2] and molecular glasses based on propeller-like C3-symmetric azobenzene mesogenes [3] are investigated in classical molecular dynamics simulations. Two length scales are considered: (i) the molecular level with atomistic resolution, where reversible conformational changes of azobenzene chromophores upon light illumination lead to contractions/extensions of low amplitudes due to a limited size of mesogene groups, and (ii) the mesoscopic level, where light-induced molecular movements are observed over larger distances, comparable with the gyration radius of polymer chains. The influence of isomerization and orientation mechanisms on molecular structure and light-induced deformation is elucidated. [1] J. Ilnytskyi et al., J. Chem. Phys. 135, 044901 (2011). [2] M Saphiannikova et al., Proceedings of SPIE "Optical Materials and Biomaterials in Security and Defence Systems Technology X", 8901, 890138 (2013). [3] N.S. Jadavalli et al., Appl. Phys. Lett. 105, 051601 (2014).

      Related collections

      Author and article information



      Comment on this article