+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Poster: found
      Is Open Access

      In-vivo evidence for proximodistal heterogeneity in hippocampal CA1 and CA3 during non-spatial memory retrieval

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Recent immediate early gene evidence suggests that proximal CA3 (proxCA3, close to dentate gyrus) and distal CA1 (distCA1, close to subiculum) form a specialized non-spatial hippocampal subnetwork (nakamura et al, JON, 2013; Beer and Vavra, Plos Biology, 2018) while distal CA3 (distCA3) and proximal CA1 (proxCA1) are more specialized in spatial information processing (Flashbeck et al, 2018). However, direct in-vivo evidence for such functional networks are still missing. Here, we used chronically implanted multi-tetrode recording technique to simultaneously record along the proximodistal axis of the two CA-fields while rats performed a high-demanding delayed non-match to odor memory task. In this task, rats smelled 10 (old) odors during the study phase, and after a 20-minute delay memory for the studied odors was tested by exposing rats to the same odors intermixed with 10 new odors. We recorded 193 CA3- and 367 CA1-neurons in 5 animals who could perfom above threshold (75%). Using Support Vector Machine (SVM) we tested whether proxCA3-distCA1 neurons (non-spatial network) can differentiate the old from new odors better than distCA3-proxCA1 neurons (spatial network). We found that activity in the proxCA3-distCA1 network was relevant for the discrimination between old from new odors and similar to behavior; in contrast, the activity of the distCA3-proxCA1 network was not. Further, we found a gradient in the distribution of task-relevant neurons along the transverse axis of CA1 as well as CA3. Overall, we provide clear in vivo electrophysiological evidence that supports the role of proxCA3-distCA1 network in non-spatial memory processing.

          Related collections

          Author and article information

          ScienceOpen Posters
          1 July 2020
          [1 ] Leibniz Institute for Neurobiology Magdeburg
          [2 ] Free University of Berlin

          This work has been published open access under Creative Commons Attribution License CC BY 4.0 , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Conditions, terms of use and publishing policy can be found at .

          The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

          Neurosciences, Life sciences

          retrieval, memory, hippocampus, CA1, CA3, non-spatial, odor, proximodistal, electrophysiology, in vivo


          Comment on this article