295
views
0
recommends
+1 Recommend
1 collections
    0
    shares
       
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Green Synthesis of Silver Nanoparticles Using Alagaw (Premna odorata) Leaf Extract

      Preprint
      In review
      research-article
        1 , , 1 , 1
      ScienceOpen Preprints
      ScienceOpen
      Nanoparticles, Biosynthesis, Absorbance Spectrum
      Bookmark

            Author Summary

            Summary

            This study aimed to find out whether Alagaw plant can potentially act as a reducing agent for the biosynthesis of silver nanoparticles and whether the concentration of the leaf extract can affect the absorbance spectrum, size and shape of the synthesized silver nanoparticles. The synthesized silver nanoparticles were characterized using the UV-vis spectroscopy for its absorbance spectrum and Transmission Electron Microscope Analysis for its morphology and size. The experimental method of research was used using three treatments and replicates of the different concentrations of Alagaw leaf extract: Treatment A (0.2 g/mL), Treatment B (0.4 g/mL) and Treatment C (0.6 g/mL) with 10 minutes and 60 minutes interval of observation under UV-vis spectrophotometer. Based on the findings of the study, Alagaw plant can potentially act as a good reducing agent for the biosynthesis of silver nanoparticles. The results recorded from UV-vis spectrophotometer support the biosynthesis and characterization of silver nanoparticles that as the concentration of the leaf extract increases it significantly affect the wavelength peaks and absorbance peaks of the synthesized silver nanoparticles. Using the high-resolution Transmission Electron Microscopy, the size of silver nanoparticles measured 50 nm – 100 nm having near-spherical in shape.

            Abstract

            There is a worldwide interest in silver nanoparticles (AgNPs) synthesize by various chemical reactions for use in applications. Silver nanoparticles have gained significant interest due to their unique optical, antimicrobial, electrical, physical properties and their possible application. However, it is necessary to develop environmental friendly methods for their syntheses. To avoid chemically toxicity, biosynthesis of metal silver nanoparticles is proposed as a cost-effective and environmental friendly alternative. This study aimed to find out whether Alagaw plant can potentially act as a reducing agent for the biosynthesis of silver nanoparticles and whether the concentration of the leaf extract can affect the absorbance spectrum, size and shape of the synthesized silver nanoparticles. The synthesized silver nanoparticles were characterized using the UV-vis spectroscopy for its absorbance spectrum and Transmission Electron Microscope Analysis for its morphology and size. The experimental method of research was used using three treatments and replicates of the different concentrations of Alagaw leaf extract: Treatment A (0.2 g/mL), Treatment B (0.4 g/mL) and Treatment C (0.6 g/mL) with 10 minutes and 60 minutes interval of observation under UV-vis spectrophotometer. Based on the findings of the study, Alagaw plant can potentially act as a good reducing agent for the biosynthesis of silver nanoparticles. The results recorded from UV-vis spectrophotometer support the biosynthesis and characterization of silver nanoparticles that as the concentration of the leaf extract increases it significantly affect the wavelength peaks and absorbance peaks of the synthesized silver nanoparticles. Using the high-resolution Transmission Electron Microscopy, the size of silver nanoparticles measured 50 nm – 100 nm having near-spherical in shape.

            Content

            Author and article information

            Journal
            ScienceOpen Preprints
            ScienceOpen
            13 May 2021
            Affiliations
            [1 ] Capiz State University - Main Campus
            Article
            10.14293/S2199-1006.1.SOR-.PPAEJOG.v1
            244f7054-7b56-467a-b83d-025f59757352

            This work has been published open access under Creative Commons Attribution License CC BY 4.0 , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Conditions, terms of use and publishing policy can be found at www.scienceopen.com .


            The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.
            Nanotechnology
            Nanoparticles,Absorbance Spectrum,Biosynthesis

            Comments

            Comment on this article