147
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      scite_
      Version and Review History
       
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rhodopsin Replacement in a I307N Mouse Model of ADRP by the Homology Independent Transgene Insertion Method

      Preprint
      In review
      research-article
        1 , , 1
      ScienceOpen Preprints
      ScienceOpen
      Retinitis pigmentosa, CRISPR, Gene therapy, Cas, TVRM4, HITI, NHEJ, AAV, Retina, Ocular
      Bookmark

            Revision notes

            Corrected error in author's name.

            Abstract

            Retinitis pigmentosa affects 1 in 4,000 people worldwide. Mutations in over twenty genes cause autosomal dominant retinitis pigmentosa. 30-40% of autosomal dominant retinitis pigmentosa are due to mutations rhodopsin with more than 100 known mutations being identified. Due to this allelic and causal diversity, allele-independent approaches are an attractive option. Here, we demonstrate an allele-independent CRISPR/Cas9 approach; this contrasts with many current allele-specific rhodopsin approaches. A homology-independent transgene is co-delivered with RSV-spCas9 packaged in an AAV5 vector for gene replacement via insertion in the Rho I307N mouse model of autosomal dominant retinitis pigmentosa. First, we establish the safety of this system, in C57BL/6J mice, demonstrating no loss of retinal thickness or function. We further show that outer nuclear layer thickness, electrical response, and rhodopsin expression in heterozygous Rho I307N were significantly preserved six months after treatment. This retention results from a 5.7% transgene integration and 88% indel rate in treated animals.

            Content

            Author and article information

            Journal
            ScienceOpen Preprints
            ScienceOpen
            17 May 2023
            Affiliations
            [1 ] Ascelapian technologies, 436 Southbridge Street Suite 2 Auburn, MA 01501;
            Author notes
            Author information
            https://orcid.org/0000-0001-7009-9702
            https://orcid.org/0000-0002-4944-9824
            Article
            10.14293/S2199-1006.1.SOR-.PPBJPMO.v2
            d14fac6a-119d-4d25-ab35-97b3c90c05ee

            This work has been published open access under Creative Commons Attribution License CC BY 4.0 , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Conditions, terms of use and publishing policy can be found at www.scienceopen.com .

            History
            : 25 January 2023
            Categories

            The data that support the findings of this study are available from Brian Rossmiller but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are however available from the authors upon reasonable request and with permission of Brian Rossmiller.
            Biomedical engineering
            Retinitis pigmentosa,CRISPR,Gene therapy,Cas,TVRM4,HITI,NHEJ,AAV,Retina,Ocular

            References

            1. Xu Z.R., Jiang F.G., Chen F.. Distribution and localization of abnormally expressed OPTN proteins in RGC5 retinal ganglion cells and their effects on subcellular morphology. Genetics and Molecular Research. Vol. 14(4):12093–12101. 2015. Genetics and Molecular Research. [Cross Ref]

            2. Jiang David J., Xu Christine L., Tsang Stephen H.. Revolution in Gene Medicine Therapy and Genome Surgery. Genes. Vol. 9(12)2018. MDPI AG. [Cross Ref]

            3. Sisk Robert A. Valproic acid treatment may be harmful in non-dominant forms of retinitis pigmentosa: Table 1. British Journal of Ophthalmology. Vol. 96(8):1154–1155. 2012. BMJ. [Cross Ref]

            4. Sandberg M. A., Rosner B., Weigel-DiFranco C., Berson E. L.. Lack of scientific rationale for use of valproic acid for retinitis pigmentosa. British Journal of Ophthalmology. Vol. 95(5)2011. BMJ. [Cross Ref]

            5. Gottlieb J, Muzyczka N. In vitro excision of adeno-associated virus DNA from recombinant plasmids: isolation of an enzyme fraction from HeLa cells that cleaves DNA at poly(G) sequences. Molecular and Cellular Biology. Vol. 8(6):2513–2522. 1988. Informa UK Limited. [Cross Ref]

            6. Bujakowska Kinga M., Liu Qin, Pierce Eric A.. Photoreceptor Cilia and Retinal Ciliopathies. Cold Spring Harbor Perspectives in Biology. Vol. 9(10)2017. Cold Spring Harbor Laboratory. [Cross Ref]

            7. He Xiangjun, Tan Chunlai, Wang Feng, Wang Yaofeng, Zhou Rui, Cui Dexuan, You Wenxing, Zhao Hui, Ren Jianwei, Feng Bo. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Research. Vol. 44(9)2016. Oxford University Press (OUP). [Cross Ref]

            8. Mao Haoyu, Gorbatyuk Marina S., Rossmiller Brian, Hauswirth William W., Lewin Alfred S.. Long-Term Rescue of Retinal Structure and Function by Rhodopsin RNA Replacement with a Single Adeno-Associated Viral Vector in P23H<i>RHO</i>Transgenic Mice. Human Gene Therapy. Vol. 23(4):356–366. 2012. Mary Ann Liebert Inc. [Cross Ref]

            9. Dinculescu Astra, Glushakova Lyudmyla, Min Seok-Hong, Hauswirth William W.. Adeno-Associated Virus-Vectored Gene Therapy for Retinal Disease. Human Gene Therapy. Vol. 16(6):649–663. 2005. Mary Ann Liebert Inc. [Cross Ref]

            10. Li Pingjuan, Kleinstiver Benjamin P., Leon Mihoko Y., Prew Michelle S., Navarro-Gomez Daniel, Greenwald Scott H., Pierce Eric A., Joung J. Keith, Liu Qin. Allele-Specific CRISPR-Cas9 Genome Editing of the Single-Base P23H Mutation for Rhodopsin-Associated Dominant Retinitis Pigmentosa. The CRISPR Journal. Vol. 1(1):55–64. 2018. Mary Ann Liebert Inc. [Cross Ref]

            11. Cideciyan Artur V., Sudharsan Raghavi, Dufour Valérie L., Massengill Michael T., Iwabe Simone, Swider Malgorzata, Lisi Brianna, Sumaroka Alexander, Marinho Luis Felipe, Appelbaum Tatyana, Rossmiller Brian, Hauswirth William W., Jacobson Samuel G., Lewin Alfred S., Aguirre Gustavo D., Beltran William A.. Mutation-independent rhodopsin gene therapy by knockdown and replacement with a single AAV vector. Proceedings of the National Academy of Sciences. Vol. 115(36)2018. Proceedings of the National Academy of Sciences. [Cross Ref]

            12. LaVail Matthew M., Yasumura Douglas, Matthes Michael T., Drenser Kimberly A., Flannery John G., Lewin Alfred S., Hauswirth William W.. Ribozyme rescue of photoreceptor cells in P23H transgenic rats: Long-term survival and late-stage therapy. Proceedings of the National Academy of Sciences. Vol. 97(21):11488–11493. 2000. Proceedings of the National Academy of Sciences. [Cross Ref]

            13. Merlo D, Di Stasi A M M, Bonini P, Mollinari C, Cardinale A, Cozzolino F, Wisden W, Garaci E. DNA repair in post-mitotic neurons: a gene-trapping strategy. Cell Death &amp; Differentiation. Vol. 12(3):307–309. 2005. Springer Science and Business Media LLC. [Cross Ref]

            14. Nishiguchi Koji M., Fujita Kosuke, Miya Fuyuki, Katayama Shota, Nakazawa Toru. Single AAV-mediated mutation replacement genome editing in limited number of photoreceptors restores vision in mice. Nature Communications. Vol. 11(1)2020. Springer Science and Business Media LLC. [Cross Ref]

            15. Maruyama Takeshi, Dougan Stephanie K, Truttmann Matthias C, Bilate Angelina M, Ingram Jessica R, Ploegh Hidde L. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nature Biotechnology. Vol. 33(5):538–542. 2015. Springer Science and Business Media LLC. [Cross Ref]

            16. Hu Johnny H., Miller Shannon M., Geurts Maarten H., Tang Weixin, Chen Liwei, Sun Ning, Zeina Christina M., Gao Xue, Rees Holly A., Lin Zhi, Liu David R.. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. Vol. 556(7699):57–63. 2018. Springer Science and Business Media LLC. [Cross Ref]

            17. Suzuki Keiichiro, Tsunekawa Yuji, Hernandez-Benitez Reyna, Wu Jun, Zhu Jie, Kim Euiseok J., Hatanaka Fumiyuki, Yamamoto Mako, Araoka Toshikazu, Li Zhe, Kurita Masakazu, Hishida Tomoaki, Li Mo, Aizawa Emi, Guo Shicheng, Chen Song, Goebl April, Soligalla Rupa Devi, Qu Jing, Jiang Tingshuai, Fu Xin, Jafari Maryam, Esteban Concepcion Rodriguez, Berggren W. Travis, Lajara Jeronimo, Nuñez-Delicado Estrella, Guillen Pedro, Campistol Josep M., Matsuzaki Fumio, Liu Guang-Hui, Magistretti Pierre, Zhang Kun, Callaway Edward M., Zhang Kang, Belmonte Juan Carlos Izpisua. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. Vol. 540(7631):144–149. 2016. Springer Science and Business Media LLC. [Cross Ref]

            18. Hauswirth William W, Lewin Alfred S. Ribozyme uses in retinal gene therapy. Progress in Retinal and Eye Research. Vol. 19(6):689–710. 2000. Elsevier BV. [Cross Ref]

            19. Kennedy Edward M., Cullen Bryan R.. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment. Virology. Vol. 479-480:213–220. 2015. Elsevier BV. [Cross Ref]

            20. Yanik Mert, Müller Brigitte, Song Fei, Gall Jacqueline, Wagner Franziska, Wende Wolfgang, Lorenz Birgit, Stieger Knut. In vivo genome editing as a potential treatment strategy for inherited retinal dystrophies. Progress in Retinal and Eye Research. Vol. 56:1–18. 2017. Elsevier BV. [Cross Ref]

            21. Crosson Sean M., Dib Peter, Smith J. Kennon, Zolotukhin Sergei. Helper-free Production of Laboratory Grade AAV and Purification by Iodixanol Density Gradient Centrifugation. Molecular Therapy - Methods &amp; Clinical Development. Vol. 10:1–7. 2018. Elsevier BV. [Cross Ref]

            22. Jasin Maria, Haber James E.. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair. DNA Repair. Vol. 44:6–16. 2016. Elsevier BV. [Cross Ref]

            23. Rossmiller Brian P., Ryals Renee C., Lewin Alfred S.. Gene Therapy to Rescue Retinal Degeneration Caused by Mutations in RhodopsinMethods in Molecular Biology. p. 391–410. 2015. Springer New York. [Cross Ref]

            24. Mao Haoyu, Gorbatyuk Marina S., Hauswirth William W., Lewin Alfred S.. Gene Delivery of Wild-Type Rhodopsin Rescues Retinal Function in an Autosomal Dominant Retinitis Pigmentosa Mouse ModelRetinal Degenerative Diseases. p. 199–205. 2012. Springer US. [Cross Ref]

            25. Gorbatyuk Marina S., Gorbatyuk Oleg S., LaVail Matthew M., Lin Jonathan H., Hauswirth William W., Lewin Alfred S.. Functional Rescue of P23H Rhodopsin Photoreceptors by Gene DeliveryRetinal Degenerative Diseases. p. 191–197. 2012. Springer US. [Cross Ref]

            Comments

            Comment on this article