The congruent number problem is the oldest unsolved major mathematical problem to date. The problem aiming to determine whether or not some given integer n is congruent, which corresponds to a Pythagorean triangle with integer sides, can be settled in a finite number of steps. However, once we permit the triangles to acquire rational values for its sides, the degree of difficulty of the task changes dramatically. In this paper a basis is developed, to produce right Pythagorean triangles with rational sides and integral area in a straightforward manner. Determining whether or not a given natural number n is congruent, is equivalent to a search through an ordered 2D array.