42
views
0
recommends
+1 Recommend
1 collections
0
shares

• Record: found
• Abstract: found
• Article: found
Is Open Access

# Fermat's Last Theorem: A Proof by Contradiction

Preprint
In review
research-article 1 ,
ScienceOpen Preprints
ScienceOpen
Bookmark

### Abstract

In this paper I offer an algebraic proof by contradiction of Fermat’s Last Theorem. Using an alternative to the standard binomial expansion, (a+b) n = a n + b Pn i=1 a n−i (a + b) i−1 , a and b nonzero integers, n a positive integer, I show that a simple rewrite of the Fermat’s equation stating the theorem, A p + B p = (A + B − D) p , A, B, D and p positive integers, D < A < B, p ≥ 3 and prime, entails the contradiction, A(B − D) X p−1 i=2 (−D) p−1−i "X i−1 j=1 A i−1−j (A + B − D) j−1 # + B(A − D) X p−1 i=2 (−D) p−1−i "X i−1 j=1 B i−1−j (A + B − D) j−1 # = 0, the sum of two positive integers equal to zero. This contradiction shows that the rewrite has no non-trivial positive integer solutions and proves Fermat’s Last Theorem. AMS 2020 subject classification: 11A99, 11D41 Diophantine equations, Fermat’s equation ∗The corresponding author. E-mail: bookie@hevanet.com 1 1 Introduction To prove Fermat’s Last Theorem, it suffices to show that the equation A p + B p = C p (1In this paper I offer an algebraic proof by contradiction of Fermat’s Last Theorem. Using an alternative to the standard binomial expansion, (a+b) n = a n + b Pn i=1 a n−i (a + b) i−1 , a and b nonzero integers, n a positive integer, I show that a simple rewrite of the Fermat’s equation stating the theorem, A p + B p = (A + B − D) p , A, B, D and p positive integers, D < A < B, p ≥ 3 and prime, entails the contradiction, A(B − D) X p−1 i=2 (−D) p−1−i "X i−1 j=1 A i−1−j (A + B − D) j−1 # + B(A − D) X p−1 i=2 (−D) p−1−i "X i−1 j=1 B i−1−j (A + B − D) j−1 # = 0, the sum of two positive integers equal to zero. This contradiction shows that the rewrite has no non-trivial positive integer solutions and proves Fermat’s Last Theorem.

### Author and article information

###### Journal
ScienceOpen Preprints
ScienceOpen
25 December 2021
###### Affiliations
[1 ] Independent Scholar, Portland, OR
###### Article
10.14293/S2199-1006.1.SOR-.PPNRYJC.v1
64f7da02-5920-4964-97ed-329e54127e01

This work has been published open access under Creative Commons Attribution License CC BY 4.0 , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Conditions, terms of use and publishing policy can be found at www.scienceopen.com .

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
Social & Behavioral Sciences,Mathematics