We present a novel linear algebra formulation of the math behind the FastMultipole Method (FMM). For this, we introduce the Taylor numbers. They are polynomials governed by differential algebra but used like integers and floating points. They help simplify the FMM math and potentially any scientific programming project.
Berz M. Differential algebraic description of beam dynamics to very high orders. 1988. Office of Scientific and Technical Information (OSTI). [Cross Ref]
Bauch H.. Atanassova, L.; Herzberger, .I., Computer Arithmetic and Enclosure Methods. Amsterdam etc., North-Holland 1992. X, 504 pp., Dfl. 260.00. ISBN 0-444-89834-4. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. Vol. 74(7)1994. Wiley. [Cross Ref]
Borsellino A., Poggio T.. Convolution and correlation algebras. Kybernetik. Vol. 13(2):113–122. 1973. Springer Science and Business Media LLC. [Cross Ref]
The VNR Concise Encyclopedia of Mathematics. 1990. Springer Netherlands. [Cross Ref]
Greengard Leslie F.. The Rapid Evaluation of Potential Fields in Particle Systems. 1988. The MIT Press. [Cross Ref]
Kalman Dan. Doubly Recursive Multivariate Automatic Differentiation. Mathematics Magazine. Vol. 75(3):187–202. 2002. Informa UK Limited. [Cross Ref]
Goodstein R. L.. Infinite sequences and series. By Konrad Knopp, Translated by F. Bagemihl. Pp.186. $1.75. 1956. (Dover Publications, New York). The Mathematical Gazette. Vol. 41(337)1957. Cambridge University Press (CUP). [Cross Ref]
The synthetic theorySynthetic Differential Geometry. p. 1–96. 2006. Cambridge University Press. [Cross Ref]
Efficient recurrence relations for univariate and multivariate Taylor series coefficientsConference Publications. 2013. AIMS Press. [Cross Ref]
Pennestrì E., Stefanelli R.. Linear algebra and numerical algorithms using dual numbers. Multibody System Dynamics. Vol. 18(3):323–344. 2007. Springer Science and Business Media LLC. [Cross Ref]
Rotman Joseph. Commutative rings IAdvanced Modern Algebra. p. 81–171. 2010. American Mathematical Society. [Cross Ref]
Shanker B., Huang H.. Accelerated Cartesian expansions – A fast method for computing of potentials of the form R−ν for all real ν. Journal of Computational Physics. Vol. 226(1):732–753. 2007. Elsevier BV. [Cross Ref]
Zhang He, Berz Martin. The fast multipole method in the differential algebra framework. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. Vol. 645(1):338–344. 2011. Elsevier BV. [Cross Ref]