Blog
About

3,566
views
0
recommends
+1 Recommend
1 collections
    11
    shares
    • Record: found
    • Abstract: found
    • Article: found
    Is Open Access

    Production and characterization of cyclodextrin glycosyltransferase from Bacillus sp. isolated from Cuban soil

    Read this article at

    Bookmark
        There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

        Abstract

        A cyclodextrin glycosyltransferase (CGTase) from an alkaliphilic Bacillus sp. strain, isolated from Cuban soil, was purified with Sephadex G-50 with a yield of 66.5%. The CGTase was stable over a very wide pH range, 6.0–10, at 25°C and was most active at pH 7.5. The enzyme exhibited an optimum temperature of 60°C and was stable to 50°C for at least 8 h. The T 50 value – defined as the temperature at which 50% of the initial activity was retained–was 63°C in this enzyme. The influence of substrate or product concentration on the initial rate of CD production was studied, and the kinetic parameters were determined. The analysis of kinetic parameters K m and V max was obtained by the action of CGTase on the starch of corn with respect to β-CD, and the values were 4.1 g/L and 5.2 μM β-CD/min ml, respectively. The purified CGTase from Bacillus sp. could be used for an efficient cyclodextrin (CD) production which is the significant yield of γ- CDs.

        Related collections

        Most cited references 44

        • Record: found
        • Abstract: not found
        • Article: not found

        A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding

          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Developments in the use of Bacillus species for industrial production.

          Bacillus species continue to be dominant bacterial workhorses in microbial fermentations. Bacillus subtilis (natto) is the key microbial participant in the ongoing production of the soya-based traditional natto fermentation, and some Bacillus species are on the Food and Drug Administration's GRAS (generally regarded as safe) list. The capacity of selected Bacillus strains to produce and secrete large quantities (20-25 g/L) of extracellular enzymes has placed them among the most important industrial enzyme producers. The ability of different species to ferment in the acid, neutral, and alkaline pH ranges, combined with the presence of thermophiles in the genus, has lead to the development of a variety of new commercial enzyme products with the desired temperature, pH activity, and stability properties to address a variety of specific applications. Classical mutation and (or) selection techniques, together with advanced cloning and protein engineering strategies, have been exploited to develop these products. Efforts to produce and secrete high yields of foreign recombinant proteins in Bacillus hosts initially appeared to be hampered by the degradation of the products by the host proteases. Recent studies have revealed that the slow folding of heterologous proteins at the membrane-cell wall interface of Gram-positive bacteria renders them vulnerable to attack by wall-associated proteases. In addition, the presence of thiol-disulphide oxidoreductases in B. subtilis may be beneficial in the secretion of disulphide-bond-containing proteins. Such developments from our understanding of the complex protein translocation machinery of Gram-positive bacteria should allow the resolution of current secretion challenges and make Bacillus species preeminent hosts for heterologous protein production. Bacillus strains have also been developed and engineered as industrial producers of nucleotides, the vitamin riboflavin, the flavor agent ribose, and the supplement poly-gamma-glutamic acid. With the recent characterization of the genome of B. subtilis 168 and of some related strains, Bacillus species are poised to become the preferred hosts for the production of many new and improved products as we move through the genomic and proteomic era.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bacterial alkaline proteases: molecular approaches and industrial applications.

            Proteolytic enzymes are ubiquitous in occurrence, being found in all living organisms, and are essential for cell growth and differentiation. The extracellular proteases are of commercial value and find multiple applications in various industrial sectors. Although there are many microbial sources available for producing proteases, only a few are recognized as commercial producers. A good number of bacterial alkaline proteases are commercially available, such as subtilisin Carlsberg, subtilisin BPN' and Savinase, with their major application as detergent enzymes. However, mutations have led to newer protease preparations with improved catalytic efficiency and better stability towards temperature, oxidizing agents and changing wash conditions. Many newer preparations, such as Durazym, Maxapem and Purafect, have been produced, using techniques of site-directed mutagenesis and/or random mutagenesis. Directed evolution has also paved the way to a great variety of subtilisin variants with better specificities and stability. Molecular imprinting through conditional lyophilization is coming up to match molecular approaches in protein engineering. There are many possibilities for modifying biocatalysts through molecular approaches. However, the search for microbial sources of novel alkaline proteases in natural diversity through the "metagenome" approach is targeting a hitherto undiscovered wealth of molecular diversity. This fascinating development will allow the biotechnological exploitation of uncultured microorganisms, which by far outnumber the species accessible by cultivation, regardless of the habitat. In this review, we discuss the types and sources of proteases, protease yield-improvement methods, the use of new methods for developing novel proteases and applications of alkaline proteases in industrial sectors, with an overview on the use of alkaline proteases in the detergent industry.
              Bookmark

              Author and article information

              Affiliations
              [1 ]Center for Enzyme Technology, University of Matanzas, Matanzas, Cuba
              Author notes
              [* ]Corresponding author's e-mail address: hlrperez2003@ 123456gmail.com
              Contributors
              (View ORCID Profile)
              Journal
              SOR-CHEM
              ScienceOpen Research
              ScienceOpen
              2199-1006
              02 December 2014
              : 0 (ID: e17a3de1-54f3-492e-80ee-21ac1d835fda )
              : 0
              : 1-6
              2176:XE
              10.14293/S2199-1006.1.SOR-CHEM.ASGLIM.v1
              © 2014 K.H. Sánchez et al.

              This work has been published open access under Creative Commons Attribution License CC BY 4.0 , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Conditions, terms of use and publishing policy can be found at www.scienceopen.com .

              Counts
              Figures: 6, Tables: 1, References: 40, Pages: 6
              Product
              Categories
              Original article
              ScienceOpen disciplines:
              Keywords:

              Comments

              2015-06-02 12:46 UTC
              +1
              2015-05-06 13:22 UTC
              +1

              Comment on this article