• Record: found
  • Abstract: found
  • Article: found
Is Open Access

Wide-spectrum biomimetic antimicrobial systems

Read this article at

      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


      Antimicrobial peptides (AMPs) are effective components of the host immune response and are widely distributed throughout nature. Recently, nontoxic antimicrobial polymers that mimic the structures of naturally occurring AMPs have been designed and are under development commercially as novel therapeutics. These compounds have several potential advantages over natural AMPs, including greater stability and reduced immunogenicity compared to natural peptides, relatively simple and scalable syntheses and the ability to tailor or “fine tune” their activities through combinatorial approaches. In previous work, we demonstrated the utility of certain generally regarded as safe (GRAS) flavorant and aroma compounds as enhancers of uptake and activity of clinically important antibiotics ( Brehm-Stecher & Johnson, 2003). Here, we have extended this approach to include enhancement of biomimetic antimicrobial polymers. Three low molecular weight (<1000 D), broad-spectrum arylamide polymers (PolyMedix, Inc., Radnor, PA) were examined for their antimicrobial activities against gram-negative bacteria, gram-positive bacteria, yeast and filamentous fungi, both alone and when co-administered with sesquiterpenoid enhancers. Assay formats included disk diffusion, automated turbidimetry, time course (kinetic) plating of antimicrobial-treated cell suspensions, outer membrane assays with 1-N-phenylnaphthylamine (NPN) and transmission electron microscopy (TEM). Although results differed according to the polymer and test organism used, treatments containing sesquiterpenoids were marked by either increased ZOIs, decreased MICs or more rapid inactivation when compared with polymer-only treatments. Antimicrobial activity, expressed as decimal reduction times (D-value), showed that after 5 min, the combination of sesquiterpenoid and polymer was significantly different from the controls ( p < 0.05) with a D-value of 3.92 min when incubated with Escherichia coli ATCC 25922. Collectively, our results indicate that the combination of sesquiterpenoid-enhancing agents with biomimetic antimicrobial polymers shows promise for the development of new, faster-acting and more broadly effective antimicrobial therapies.

      Related collections

      Most cited references 23

      • Record: found
      • Abstract: found
      • Article: not found

      Antimicrobial peptides of multicellular organisms.

      Multicellular organisms live, by and large, harmoniously with microbes. The cornea of the eye of an animal is almost always free of signs of infection. The insect flourishes without lymphocytes or antibodies. A plant seed germinates successfully in the midst of soil microbes. How is this accomplished? Both animals and plants possess potent, broad-spectrum antimicrobial peptides, which they use to fend off a wide range of microbes, including bacteria, fungi, viruses and protozoa. What sorts of molecules are they? How are they employed by animals in their defence? As our need for new antibiotics becomes more pressing, could we design anti-infective drugs based on the design principles these molecules teach us?
        • Record: found
        • Abstract: found
        • Article: not found

        Mechanisms of antimicrobial peptide action and resistance.

        Antimicrobial peptides have been isolated and characterized from tissues and organisms representing virtually every kingdom and phylum, ranging from prokaryotes to humans. Yet, recurrent structural and functional themes in mechanisms of action and resistance are observed among peptides of widely diverse source and composition. Biochemical distinctions among the peptides themselves, target versus host cells, and the microenvironments in which these counterparts convene, likely provide for varying degrees of selective toxicity among diverse antimicrobial peptide types. Moreover, many antimicrobial peptides employ sophisticated and dynamic mechanisms of action to effect rapid and potent activities consistent with their likely roles in antimicrobial host defense. In balance, successful microbial pathogens have evolved multifaceted and effective countermeasures to avoid exposure to and subvert mechanisms of antimicrobial peptides. A clearer recognition of these opposing themes will significantly advance our understanding of how antimicrobial peptides function in defense against infection. Furthermore, this understanding may provide new models and strategies for developing novel antimicrobial agents, that may also augment immunity, restore potency or amplify the mechanisms of conventional antibiotics, and minimize antimicrobial resistance mechanisms among pathogens. From these perspectives, the intention of this review is to illustrate the contemporary structural and functional themes among mechanisms of antimicrobial peptide action and resistance.
          • Record: found
          • Abstract: found
          • Article: not found

          Cationic peptides: effectors in innate immunity and novel antimicrobials.

           R. Hancock (2001)
          Cationic antimicrobial peptides are produced by all organisms, from plants and insects to human beings, as a major part of their immediately effective, non-specific defences against infections. With the increasing development of antibiotic resistance among key bacterial pathogens, there is an urgent need to discover novel classes of antibiotics. Therefore, cationic peptides are being developed through clinical trials as anti-infective agents. In addition to their ability to kill microbes, these peptides seem to have effector functions in innate immunity and can upregulate the expression of multiple genes in eukaryotic cells. One such function might involve the dampening of signalling by bacterial molecules such as lipopolysaccharide and lipoteichoic acid.

            Author and article information

            Rapid Microbial Detection and Control Laboratory, Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
            Author notes
            [* ]Corresponding author’s e-mail address: byron@
            (View ORCID Profile)
            ScienceOpen Research
            29 December 2016
            : 0 (ID: )
            : 0
            : 1-9
            © 2017 Wright and Brehm-Stecher

            This work has been published open access under Creative Commons Attribution License CC BY 4.0 , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Conditions, terms of use and publishing policy can be found at .

            Figures: 4, Tables: 3, References: 22, Pages: 9
            Original article
            ScienceOpen disciplines:


            Comment on this article