1,086
views
0
recommends
+1 Recommend
1 collections
    5
    shares

      The focus of Nano-Horizons is the multidisciplinary field of Nanosciences & Nanotechnologies. To submit to the journal: https://unisapressjournals.co.za/index.php/NH/about/submissions

      scite_
       
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent Advances in Materials for Supercapacitors

      Published
      research-article
      Bookmark

            Abstract

            The fluctuating availability of energy sources has encouraged the development of energy storage devices such as supercapacitors. Supercapacitors are good electrochemical energy storage materials that have demonstrated promising efficiencies in diverse applications. They are able to release high power at low energy operating conditions. In this article, we introduce basic knowledge on supercapacitors, their different classifications, and their relevance to material development. We outline the progress made on diverse materials adopted in improving the performance, charge retention, and stability of supercapacitive materials. Finally, we discuss the different methods utilised in obtaining highly stable supercapacitors.

            Content

            Author and article information

            Journal
            Nano-Horizons
            UNISA Press
            12 September 2022
            : 1
            : 1
            Affiliations
            [1 ] Department of Physics and Astronomy, University of Nigeria;
            [2 ] Department of Agricultural and Bioresources Engineering, University of Nigeria;
            [3 ] Department of Physics, Federal University of Technology, Nigeria;
            [4 ] UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa;
            Author notes
            Author information
            https://orcid.org/0000-0002-4633-1417
            Article
            10.25159/NanoHorizons.53db1f5bd625
            d6be774e-97e5-4456-b159-53db1f5bd625

            This work has been published open access under Creative Commons Attribution License CC BY 4.0 , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Conditions, terms of use and publishing policy can be found at www.scienceopen.com .

            History
            : 10 May 2022
            : 4 July 2022
            Categories

            Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
            Materials science
            supercapacitor,energy storage,electrochemistry,specific capacitance,efficiency,charge retention

            References

            1. Gogotsi Yury. Energy storage wrapped up. Nature. Vol. 509(7502):568–569. 2014. Springer Science and Business Media LLC. [Cross Ref]

            2. Simon Patrice, Gogotsi Yury, Dunn Bruce. Where Do Batteries End and Supercapacitors Begin? Science. Vol. 343(6176):1210–1211. 2014. American Association for the Advancement of Science (AAAS). [Cross Ref]

            3. Chmiola John, Largeot Celine, Taberna Pierre-Louis, Simon Patrice, Gogotsi Yury. Desolvation of Ions in Subnanometer Pores and Its Effect on Capacitance and Double-Layer Theory. Angewandte Chemie International Edition. Vol. 47(18):3392–3395. 2008. Wiley. [Cross Ref]

            4. Zhai Yunpu, Dou Yuqian, Zhao Dongyuan, Fulvio Pasquale F., Mayes Richard T., Dai Sheng. Carbon Materials for Chemical Capacitive Energy Storage. Advanced Materials. Vol. 23(42):4828–4850. 2011. Wiley. [Cross Ref]

            5. Xie Jian, Zhao Cui-e, Lin Zong-qiong, Gu Pei-yang, Zhang Qichun. Nanostructured Conjugated Polymers for Energy-Related Applications beyond Solar Cells. Chemistry - An Asian Journal. Vol. 11(10):1489–1511. 2016. Wiley. [Cross Ref]

            6. Xie Jian, Gu Peiyang, Zhang Qichun. Nanostructured Conjugated Polymers: Toward High-Performance Organic Electrodes for Rechargeable Batteries. ACS Energy Letters. Vol. 2(9):1985–1996. 2017. American Chemical Society (ACS). [Cross Ref]

            7. Zhang Yu, Liu Jiang, Li Shun-Li, Su Zhong-Min, Lan Ya-Qian. Polyoxometalate-based materials for sustainable and clean energy conversion and storage. EnergyChem. Vol. 1(3)2019. Elsevier BV. [Cross Ref]

            8. Zhan Xuejun, Chen Zhong, Zhang Qichun. Recent progress in two-dimensional COFs for energy-related applications. Journal of Materials Chemistry A. Vol. 5(28):14463–14479. 2017. Royal Society of Chemistry (RSC). [Cross Ref]

            9. He Pan, Chen Qiang, Yan Mengyu, Xu Xu, Zhou Liang, Mai Liqiang, Nan Ce-Wen. Building better zinc-ion batteries: A materials perspective. EnergyChem. Vol. 1(3)2019. Elsevier BV. [Cross Ref]

            10. Winter Martin, Brodd Ralph J.. What Are Batteries, Fuel Cells, and Supercapacitors? Chemical Reviews. Vol. 104(10):4245–4270. 2004. American Chemical Society (ACS). [Cross Ref]

            11. Al-Othman Amani, Tawalbeh Muhammad, Temsah Omar, Al-Murisi Mohammed. Industrial Challenges of MOFs in Energy ApplicationsEncyclopedia of Smart Materials. p. 535–543. 2022. Elsevier. [Cross Ref]

            12. Zhang Yong, Feng Hui, Wu Xingbing, Wang Lizhen, Zhang Aiqin, Xia Tongchi, Dong Huichao, Li Xiaofeng, Zhang Linsen. Progress of electrochemical capacitor electrode materials: A review. International Journal of Hydrogen Energy. Vol. 34(11):4889–4899. 2009. Elsevier BV. [Cross Ref]

            13. Sarabi Ghazale Asghari, Bagherzadeh Roohollah. Conductive nanofibrous materials for supercapacitorsEngineered Polymeric Fibrous Materials. p. 157–170. 2021. Elsevier. [Cross Ref]

            14. Senthil T., Divakaran Nidhin, Kale Manoj B., Mubarak Suhail, Dhamodharan Duraisami, Wu Lixin, Bensingh R. Joseph, Kader M. Abdul, Dutta Kingshuk. Low-dimensional carbon-based nanomaterials for energy conversion and storage applicationsNanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems. p. 15–68. 2020. Elsevier. [Cross Ref]

            15. Zhang Liuyang, Shi Diwen, Liu Tao, Jaroniec Mietek, Yu Jiaguo. Nickel-based materials for supercapacitors. Materials Today. Vol. 25:35–65. 2019. Elsevier BV. [Cross Ref]

            16. Vangari Manisha, Pryor Tonya, Jiang Li. Supercapacitors: Review of Materials and Fabrication Methods. Journal of Energy Engineering. Vol. 139(2):72–79. 2013. American Society of Civil Engineers (ASCE). [Cross Ref]

            17. Obreja Vasile V.N.. On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material—A review. Physica E: Low-dimensional Systems and Nanostructures. Vol. 40(7):2596–2605. 2008. Elsevier BV. [Cross Ref]

            18. Sharma Pawan, Bhatti T.S.. A review on electrochemical double-layer capacitors. Energy Conversion and Management. Vol. 51(12):2901–2912. 2010. Elsevier BV. [Cross Ref]

            19. Salunkhe Rahul R., Young Christine, Tang Jing, Takei Toshiaki, Ide Yusuke, Kobayashi Naoya, Yamauchi Yusuke. A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte. Chemical Communications. Vol. 52(26):4764–4767. 2016. Royal Society of Chemistry (RSC). [Cross Ref]

            20. Salunkhe Rahul R., Lee Ying‐Hui, Chang Kuo‐Hsin, Li Jing‐Mei, Simon Patrice, Tang Jing, Torad Nagy L., Hu Chi‐Chang, Yamauchi Yusuke. Nanoarchitectured Graphene‐Based Supercapacitors for Next‐Generation Energy‐Storage Applications. Chemistry – A European Journal. Vol. 20(43):13838–13852. 2014. Wiley. [Cross Ref]

            21. Nwachukwu Iheke Micheal, Nwanya Assumpta Chinwe, Osuji Rose, Ezema Fabian I.. Nanostructured Mn-doped CeO2 thin films with enhanced electrochemical properties for pseudocapacitive applications. Journal of Alloys and Compounds. Vol. 886:2021. Elsevier BV. [Cross Ref]

            22. Nwanya Assumpta Chinwe, Ndipingwi Miranda M., Mayedwa Noluthando, Razanamahandry L.C., Ikpo Chinwe O., Waryo Tesfaye, Ntwampe S.K.O., Malenga E., Fosso-Kankeu E., Ezema Fabian I., Iwuoha Emmanuel I., Maaza Malik. Maize (Zea mays L.) fresh husk mediated biosynthesis of copper oxides: Potentials for pseudo capacitive energy storage. Electrochimica Acta. Vol. 301:436–448. 2019. Elsevier BV. [Cross Ref]

            23. Ke Qingqing, Wang John. Graphene-based materials for supercapacitor electrodes – A review. Journal of Materiomics. Vol. 2(1):37–54. 2016. Elsevier BV. [Cross Ref]

            24. Goswami Lalit, Kushwaha Anamika, Goswami Shivani, Sharma Yogesh Chandra, Kim TaeYoung, Tripathi Kumud Malika. Nanocarbon-based-ZnO nanocomposites for supercapacitor applicationNanostructured Zinc Oxide. p. 553–573. 2021. Elsevier. [Cross Ref]

            25. Kim Haegyeom, Park Kyu-Young, Hong Jihyun, Kang Kisuk. All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries. Scientific Reports. Vol. 4(1)2015. Springer Science and Business Media LLC. [Cross Ref]

            26. Zhou Cheng, Zhang Yangwei, Li Yuanyuan, Liu Jinping. Construction of High-Capacitance 3D CoO@Polypyrrole Nanowire Array Electrode for Aqueous Asymmetric Supercapacitor. Nano Letters. Vol. 13(5):2078–2085. 2013. American Chemical Society (ACS). [Cross Ref]

            27. Wang Xuebin, Zhang Yuanjian, Zhi Chunyi, Wang Xi, Tang Daiming, Xu Yibin, Weng Qunhong, Jiang Xiangfen, Mitome Masanori, Golberg Dmitri, Bando Yoshio. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nature Communications. Vol. 4(1)2013. Springer Science and Business Media LLC. [Cross Ref]

            28. Nwanya Assumpta C, Obi Daniel, Osuji Rose U., Bucher R., Maaza Malik, Ezema Fabian I.. Simple chemical route for nanorod-like cobalt oxide films for electrochemical energy storage applications. Journal of Solid State Electrochemistry. Vol. 21(9):2567–2576. 2017. Springer Science and Business Media LLC. [Cross Ref]

            29. Nwanya Assumpta C., Offiah Solomon U., Amaechi Ifeanyichukwu C., Agbo Solomon, Ezugwu Sabastine C., Sone B.T., Osuji Rose U., Maaza Malik, Ezema Fabian I.. Electrochromic and electrochemical supercapacitive properties of Room Temperature PVP capped Ni(OH)2/NiO Thin Films. Electrochimica Acta. Vol. 171:128–141. 2015. Elsevier BV. [Cross Ref]

            30. Nwanya Assumpta C, Awada Chawki, Obi Daniel, Raju Kumar, Ozoemena Kenneth I., Osuji Rose U., Ruediger Andreas, Maaza Malik, Rosei Federico, Ezema Fabian I.. Nanoporous copper-cobalt mixed oxide nanorod bundles as high performance pseudocapacitive electrodes. Journal of Electroanalytical Chemistry. Vol. 787:24–35. 2017. Elsevier BV. [Cross Ref]

            31. Simon P., Gogotsi Y.. Capacitive Energy Storage in Nanostructured Carbon–Electrolyte Systems. Accounts of Chemical Research. Vol. 46(5):1094–1103. 2013. American Chemical Society (ACS). [Cross Ref]

            32. Yu Dingshan, Goh Kunli, Wang Hong, Wei Li, Jiang Wenchao, Zhang Qiang, Dai Liming, Chen Yuan. Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nature Nanotechnology. Vol. 9(7):555–562. 2014. Springer Science and Business Media LLC. [Cross Ref]

            33. Chen Yao, Zhang Xiong, Zhang Dacheng, Yu Peng, Ma Yanwei. High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon. Vol. 49(2):573–580. 2011. Elsevier BV. [Cross Ref]

            34. Shi Shan, Xu Chengjun, Yang Cheng, Li Jia, Du Hongda, Li Baohua, Kang Feiyu. Flexible supercapacitors. Particuology. Vol. 11(4):371–377. 2013. Elsevier BV. [Cross Ref]

            35. Nwankwo Madeleine C., Ezealigo Blessing, Nwanya Assumpta C., Nkele Agnes C., Agbogu Ada, Chime Ugochi, Asogwa P.U., Ezekoye B.A., Ekwealor A.B.C., Osuji R.U., Ejikeme Paul M., Maaza M., Ezema Fabian I.. Syntheses and characterizations of GO/Mn3O4 nanocomposite film electrode materials for supercapacitor applications. Inorganic Chemistry Communications. Vol. 119:2020. Elsevier BV. [Cross Ref]

            36. Obodo Raphael M., Chime Ugochi, Nkele Agnes C., Nwanya Assumpta C., Bashir A.K.H, Madiba I.G., Asjad M., Ahmad I., Zhao T., Thovhogi N., Ezema Fabian I.. Effect of annealing on hydrothermally deposited Co3O4-ZnO thin films for supercapacitor applications. Materials Today: Proceedings. Vol. 36:374–378. 2021. Elsevier BV. [Cross Ref]

            37. Obodo R.M., Nwanya Assumpta C., Ekwealor A.B.C., Ahmad I., Zhao T., Osuji Rose U., Maaza M., Ezema Fabian I.. Influence of pH and annealing on the optical and electrochemical properties of cobalt (III) oxide (Co3O4) thin films. Surfaces and Interfaces. Vol. 16:114–119. 2019. Elsevier BV. [Cross Ref]

            38. Kang Xiaoya, Ma Yingxia, Wang Jiawei, Shi Xiaofeng, Liu Binglu, Ran Fen. Fabrication and properties of coral-like Ni/Mn-MOFs as electrode materials for supercapacitors. Journal of Materials Science: Materials in Electronics. Vol. 32(10):13430–13439. 2021. Springer Science and Business Media LLC. [Cross Ref]

            39. Nwanya Assumpta C., Deshmukh P.R., Osuji Rose U., Maaza Malik, Lokhande C.D., Ezema Fabian I.. Synthesis, characterization and gas-sensing properties of SILAR deposited ZnO-CdO nano-composite thin film. Sensors and Actuators B: Chemical. Vol. 206:671–678. 2015. Elsevier BV. [Cross Ref]

            40. Wang Kuai-Bing, Xun Qun, Zhang Qichun. Recent progress in metal-organic frameworks as active materials for supercapacitors. EnergyChem. Vol. 2(1)2020. Elsevier BV. [Cross Ref]

            41. Forouzandeh Parnia, Pillai Suresh C.. Two-dimensional (2D) electrode materials for supercapacitors. Materials Today: Proceedings. Vol. 41:498–505. 2021. Elsevier BV. [Cross Ref]

            42. Matsuda Ryotaro, Tsujino Takashi, Sato Hiroshi, Kubota Yoshiki, Morishige Kunimitsu, Takata Masaki, Kitagawa Susumu. Temperature responsive channel uniformity impacts on highly guest-selective adsorption in a porous coordination polymer. Chemical Science. Vol. 1(3)2010. Royal Society of Chemistry (RSC). [Cross Ref]

            43. Shigematsu Akihito, Yamada Teppei, Kitagawa Hiroshi. Selective Separation of Water, Methanol, and Ethanol by a Porous Coordination Polymer Built with a Flexible Tetrahedral Ligand. Journal of the American Chemical Society. Vol. 134(32):13145–13147. 2012. American Chemical Society (ACS). [Cross Ref]

            44. Corma A., García H., Llabrés i Xamena F. X.. Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews. Vol. 110(8):4606–4655. 2010. American Chemical Society (ACS). [Cross Ref]

            45. Zhou Jie, Yuan Yan, Tang Jian, Tang Weihua. Metal-organic frameworks governed well-aligned conducting polymer/bacterial cellulose membranes with high areal capacitance. Energy Storage Materials. Vol. 23:594–601. 2019. Elsevier BV. [Cross Ref]

            46. Chime Ugochi K., Nkele Agnes C., Ezugwu Sabastine, Nwanya Assumpta C., Shinde N.M., Kebede Mesfin, Ejikeme Paul M., Maaza M., Ezema Fabian I.. Recent progress in nickel oxide-based electrodes for high-performance supercapacitors. Current Opinion in Electrochemistry. Vol. 21:175–181. 2020. Elsevier BV. [Cross Ref]

            47. Li Qing, Xu Yuxia, Zheng Shasha, Guo Xiaotian, Xue Huaiguo, Pang Huan. Recent Progress in Some Amorphous Materials for Supercapacitors. Small. Vol. 14(28)2018. Wiley. [Cross Ref]

            48. Reddy Ravinder N., Reddy Ramana G.. Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material. Journal of Power Sources. Vol. 132(1-2):315–320. 2004. Elsevier BV. [Cross Ref]

            49. Xu Mao-Wen, Zhao Dan-Dan, Bao Shu-Juan, Li Hu-Lin. Mesoporous amorphous MnO2 as electrode material for supercapacitor. Journal of Solid State Electrochemistry. Vol. 11(8):1101–1107. 2007. Springer Science and Business Media LLC. [Cross Ref]

            50. Hu Liwen, Wang Wei, Tu Jiguo, Hou Jungang, Zhu Hongmin, Jiao Shuqiang. Self-assembled amorphous manganese oxide/hydroxide spheres via multi-phase electrochemical interactions in reverse micelle electrolytes and their capacitive behavior. Journal of Materials Chemistry A. Vol. 1(16)2013. Royal Society of Chemistry (RSC). [Cross Ref]

            51. Goel Shubhra, Munjal Mehak, Sharma Raj Kishore, Singh Gurmeet. Advanced applications of green materials in supercapacitorsApplications of Advanced Green Materials. p. 339–371. 2021. Elsevier. [Cross Ref]

            52. Nkele Agnes Chinecherem, Ezugwu Sabastine, Suguyima Mutsumi, Ezema Fabian I.. New Perovskite Materials for Solar Cell ApplicationsElectrode Materials for Energy Storage and Conversion. p. 411–419. 2021. CRC Press. [Cross Ref]

            53. Wang Jiashuai, Zhang Xiao, Li Zhe, Ma Yanqing, Ma Lei. Recent progress of biomass-derived carbon materials for supercapacitors. Journal of Power Sources. Vol. 451:2020. Elsevier BV. [Cross Ref]

            54. Sun Li, Tian Chungui, Li Meitong, Meng Xiangying, Wang Lei, Wang Ruihong, Yin Jie, Fu Honggang. From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. Journal of Materials Chemistry A. Vol. 1(21)2013. Royal Society of Chemistry (RSC). [Cross Ref]

            55. Wang Yulin, Qu Qingli, Gao Shuting, Tang Guosheng, Liu Kunming, He Shuijian, Huang Chaobo. Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon. Vol. 155:706–726. 2019. Elsevier BV. [Cross Ref]

            56. Chaparro-Garnica Jessica, Salinas-Torres David, Mostazo-López María José, Morallón Emilia, Cazorla-Amorós Diego. Biomass waste conversion into low-cost carbon-based materials for supercapacitors: A sustainable approach for the energy scenario. Journal of Electroanalytical Chemistry. Vol. 880:2021. Elsevier BV. [Cross Ref]

            57. Tian Jingyang, Liu Zhangming, Li Zhenghui, Wang Wenguang, Zhang Haiyan. Hierarchical S-doped porous carbon derived from by-product lignin for high-performance supercapacitors. RSC Advances. Vol. 7(20):12089–12097. 2017. Royal Society of Chemistry (RSC). [Cross Ref]

            58. Chen Duo, Li La, Xi Yunlong, Li Junzhi, Lu Mengjie, Cao Junming, Han Wei. Self-assembly of biomass microfibers into 3D layer-stacking hierarchical porous carbon for high performance supercapacitors. Electrochimica Acta. Vol. 286:264–270. 2018. Elsevier BV. [Cross Ref]

            59. Wang Cunjing, Wu Dapeng, Wang Hongju, Gao Zhiyong, Xu Fang, Jiang Kai. A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity. Journal of Materials Chemistry A. Vol. 6(3):1244–1254. 2018. Royal Society of Chemistry (RSC). [Cross Ref]

            60. Sun Zhe, Qu Keqi, You Yue, Huang Zhanhua, Liu Shouxin, Li Jian, Hu Qian, Guo Zhanhu. Overview of cellulose-based flexible materials for supercapacitors. Journal of Materials Chemistry A. Vol. 9(12):7278–7300. 2021. Royal Society of Chemistry (RSC). [Cross Ref]

            61. Zu Guoqing, Shen Jun, Zou Liping, Wang Fang, Wang Xiaodong, Zhang Yewen, Yao Xiandong. Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon. Vol. 99:203–211. 2016. Elsevier BV. [Cross Ref]

            62. Wang Qiufan, Chen Sufang, Zhang Daohong. CNT yarn-based supercapacitorsCarbon Nanotube Fibers and Yarns. p. 243–270. 2020. Elsevier. [Cross Ref]

            63. Chen Yun, Guo Zhanhu, Das Rajib, Jiang Qinglong. Starch-based Carbon Nanotubes and Graphene: Preparation, Properties and Applications. ES Food & Agroforestry. 2020. Engineered Science Publisher. [Cross Ref]

            64. Huang Hua-Dong, Liu Chun-Yan, Zhang Liang-Qing, Zhong Gan-Ji, Li Zhong-Ming. Simultaneous Reinforcement and Toughening of Carbon Nanotube/Cellulose Conductive Nanocomposite Films by Interfacial Hydrogen Bonding. ACS Sustainable Chemistry & Engineering. Vol. 3(2):317–324. 2015. American Chemical Society (ACS). [Cross Ref]

            65. Bai Yang, Liu Rong, Li Enyuan, Li Xiaolong, Liu Yang, Yuan Guohui. Graphene/Carbon Nanotube/Bacterial Cellulose assisted supporting for polypyrrole towards flexible supercapacitor applications. Journal of Alloys and Compounds. Vol. 777:524–530. 2019. Elsevier BV. [Cross Ref]

            66. Zhang Zhen, Li Lei, Qing Yan, Lu Xihong, Wu Yiqiang, Yan Ning, Yang Wen. Manipulation of Nanoplate Structures in Carbonized Cellulose Nanofibril Aerogel for High-Performance Supercapacitor. The Journal of Physical Chemistry C. Vol. 123(38):23374–23381. 2019. American Chemical Society (ACS). [Cross Ref]

            67. Voltammetric Sensors for Diverse AnalysisVoltammetry for Sensing Applications. p. 103–116. 2022. BENTHAM SCIENCE PUBLISHERS. [Cross Ref]

            68. Zhang Jian Min, Hua Qingsong, Li Jing, Yuan Jinshi, Peijs Ton, Dai Zuoqiang, Zhang Yuansai, Zheng Zongmin, Zheng Lili, Tang Jie. Cellulose-Derived Highly Porous Three-Dimensional Activated Carbons for Supercapacitors. ACS Omega. Vol. 3(11):14933–14941. 2018. American Chemical Society (ACS). [Cross Ref]

            69. De Shrabani, Acharya Sourav, Sahoo Sumanta, Chandra Nayak Ganesh. Present status of biomass-derived carbon-based composites for supercapacitor applicationNanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems. p. 373–415. 2020. Elsevier. [Cross Ref]

            70. Zhang Jiaoxia, Zhang Zhuangzhuang, Jiao Yueting, Yang Hongxun, Li Yuqing, Zhang Jing, Gao Peng. The graphene/lanthanum oxide nanocomposites as electrode materials of supercapacitors. Journal of Power Sources. Vol. 419:99–105. 2019. Elsevier BV. [Cross Ref]

            71. Fuzhi Li, Zhen Chen, Dan Zhang, Aokui Sun, Pu Shi, Jing Liang, Quanguo He. Neoteric hollow tubular MnS/Co3S4 hybrids as high-performance electrode materials for supercapacitors. Electrochimica Acta. Vol. 390:2021. Elsevier BV. [Cross Ref]

            72. Fu Min, Zhang Zhihao, Zhu Zitong, Zhuang Qingru, Chen Wei, Yu Hao, Liu Qingyun. Facile synthesis of strontium ferrite nanorods/graphene composites as advanced electrode materials for supercapacitors. Journal of Colloid and Interface Science. Vol. 588:795–803. 2021. Elsevier BV. [Cross Ref]

            73. Liu Zhenzhen, Wang Li, Xu Yingxi, Guo Jianyu, Zhang Siyong, Lu Yan. A Ti3C2TX@PEDOT composite for electrode materials of supercapacitors. Journal of Electroanalytical Chemistry. Vol. 881:2021. Elsevier BV. [Cross Ref]

            74. Zou Jizhao, Xie Dong, Zhao Fenglin, Wu Hongliang, Niu Yuan, Li Zhangjian, Zou Qiumin, Deng Fei, Zhang Qi, Zeng Xierong. Microwave rapid synthesis of nickel cobalt sulfides/CNTs composites as superior cycling ability electrode materials for supercapacitors. Journal of Materials Science. Vol. 56(2):1561–1576. 2021. Springer Science and Business Media LLC. [Cross Ref]

            75. Udeh Jude N., Obodo Raphael M., Nkele Agnes C., Nwanya Assumpta C., Ejikeme Paul M., Ezema Fabian I.. Recent Advances in Usage of Cobalt Oxide Nanomaterials as Electrode Material for SupercapacitorsElectrode Materials for Energy Storage and Conversion. p. 141–170. 2021. CRC Press. [Cross Ref]

            76. Nwanya Assumpta C., Jafta Charl J., Ejikeme Paul M., Ugwuoke Paulinus E., Reddy M.V., Osuji Rose U., Ozoemena Kenneth I., Ezema Fabian I.. Electrochromic and electrochemical capacitive properties of tungsten oxide and its polyaniline nanocomposite films obtained by chemical bath deposition method. Electrochimica Acta. Vol. 128:218–225. 2014. Elsevier BV. [Cross Ref]

            77. Nwanya Assumpta C., Obi Daniel, Ozoemena Kenneth I., Osuji Rose U., Awada Chawki, Ruediger Andreas, Maaza Malik, Rosei Federico, Ezema Fabian I.. Facile Synthesis of Nanosheet-like CuO Film and its Potential Application as a High-Performance Pseudocapacitor Electrode. Electrochimica Acta. Vol. 198:220–230. 2016. Elsevier BV. [Cross Ref]

            78. Nkele Agnes C., Nwanya Assumpta C., Shinde Nanasaheb M., Ezugwu Sabastine, Maaza Malik, Shaikh Jasmin S., Ezema Fabian I.. The use of nickel oxide as a hole transport material in perovskite solar cell configuration: Achieving a high performance and stable device. International Journal of Energy Research. Vol. 44(13):9839–9863. 2020. Wiley. [Cross Ref]

            79. Brousse Thierry, Bélanger Daniel, Long Jeffrey W.. To Be or Not To Be Pseudocapacitive? Journal of The Electrochemical Society. Vol. 162(5)2015. The Electrochemical Society. [Cross Ref]

            80. Obodo Raphael M., Ramzan M., Nsude Hope E., Onoh Edwin U., Ahmad Ishaq, Maaza Malik, Ezema Fabian I.. Radiations Induced Defects in electrode materials for energy storage devices. Radiation Physics and Chemistry. Vol. 191:2022. Elsevier BV. [Cross Ref]

            81. Qi Xinhong, Zheng Wenji, Li Xiangcun, He Gaohong. Multishelled NiO Hollow Microspheres for High-performance Supercapacitors with Ultrahigh Energy Density and Robust Cycle Life. Scientific Reports. Vol. 6(1)2016. Springer Science and Business Media LLC. [Cross Ref]

            82. Abdalla Ahmed M, Sahu Rakesh P, Wallar Cameron J, Chen Ri, Zhitomirsky Igor, Puri Ishwar K. Nickel oxide nanotube synthesis using multiwalled carbon nanotubes as sacrificial templates for supercapacitor application. Nanotechnology. Vol. 28(7)2017. IOP Publishing. [Cross Ref]

            83. Nkele Agnes C., Ike Innocent S., Ezugwu Sabastine, Maaza Malik, Ezema Fabian I.. An overview of the mathematical modelling of perovskite solar cells towards achieving highly efficient perovskite devices. International Journal of Energy Research. Vol. 45(2):1496–1516. 2021. Wiley. [Cross Ref]

            84. Fu Xuemei, Li Zhuoer, Xu Limin, Liao Meng, Sun Hao, Xie Songlin, Sun Xuemei, Wang Bingjie, Peng Huisheng. Amphiphilic core-sheath structured composite fiber for comprehensively performed supercapacitor. Science China Materials. Vol. 62(7):955–964. 2019. Springer Science and Business Media LLC. [Cross Ref]

            85. Jiang Hao, Ma Jan, Li Chunzhong. Mesoporous Carbon Incorporated Metal Oxide Nanomaterials as Supercapacitor Electrodes. Advanced Materials. Vol. 24(30):4197–4202. 2012. Wiley. [Cross Ref]

            86. Salunkhe Rahul R., Hsu Shao-Hui, Wu Kevin C. W., Yamauchi Yusuke. Large-Scale Synthesis of Reduced Graphene Oxides with Uniformly Coated Polyaniline for Supercapacitor Applications. ChemSusChem. Vol. 7(6):1551–1556. 2014. Wiley. [Cross Ref]

            87. Choi Bong Gill, Yang MinHo, Hong Won Hi, Choi Jang Wook, Huh Yun Suk. 3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities. ACS Nano. Vol. 6(5):4020–4028. 2012. American Chemical Society (ACS). [Cross Ref]

            88. Choi Bong Gill, Chang Sung-Jin, Kang Hyun-Wook, Park Chan Pil, Kim Hae Jin, Hong Won Hi, Lee SangGap, Huh Yun Suk. High performance of a solid-state flexible asymmetric supercapacitor based on graphene films. Nanoscale. Vol. 4(16)2012. Royal Society of Chemistry (RSC). [Cross Ref]

            89. Chen Po-Chiang, Shen Guozhen, Shi Yi, Chen Haitian, Zhou Chongwu. Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes. ACS Nano. Vol. 4(8):4403–4411. 2010. American Chemical Society (ACS). [Cross Ref]

            90. Wang Da-Wei, Li Feng, Cheng Hui-Ming. Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor. Journal of Power Sources. Vol. 185(2):1563–1568. 2008. Elsevier BV. [Cross Ref]

            91. Shi D., Zhang L., Yin X., Huang T. J., Gong H.. A one step processed advanced interwoven architecture of Ni(OH)<sub>2</sub> and Cu nanosheets with ultrahigh supercapacitor performance. Journal of Materials Chemistry A. Vol. 4(31):12144–12151. 2016. Royal Society of Chemistry (RSC). [Cross Ref]

            92. Lu Yi, Jiang Bin, Fang Liang, Ling Faling, Wu Fang, Hu Baoshan, Meng Fanming, Niu Kaiyang, Lin Feng, Zheng Haimei. An investigation of ultrathin nickel-iron layered double hydroxide nanosheets grown on nickel foam for high-performance supercapacitor electrodes. Journal of Alloys and Compounds. Vol. 714:63–70. 2017. Elsevier BV. [Cross Ref]

            93. Bhagwan Jai, Rani Stuti, Sivasankaran V., Yadav K.L., Sharma Yogesh. Improved energy storage, magnetic and electrical properties of aligned, mesoporous and high aspect ratio nanofibers of spinel-NiMn 2 O 4. Applied Surface Science. Vol. 426:913–923. 2017. Elsevier BV. [Cross Ref]

            94. Ahmed Jahangeer, Ubiadullah Mohd, Alhokbany Norah, Alshehri Saad M.. Synthesis of ultrafine NiMoO4 nano-rods for excellent electro-catalytic performance in hydrogen evolution reactions. Materials Letters. Vol. 257:2019. Elsevier BV. [Cross Ref]

            95. Zhang Yong, Gao Hai-li, Jia Xiao-dong, Wang Shi-wen, Yan Ji, Luo He-wei, Gao Ke-zheng, Fang Hua, Zhang Ai-qin, Wang Li-zhen. NiMoO<sub>4</sub> nanorods supported on nickel foam for high-performance supercapacitor electrode materials. Journal of Renewable and Sustainable Energy. Vol. 10(5)2018. AIP Publishing. [Cross Ref]

            96. Jing Mingjun, Wang Chiwei, Hou Hongshuai, Wu Zhibin, Zhu Yirong, Yang Yingchang, Jia Xinnan, Zhang Yan, Ji Xiaobo. Ultrafine nickel oxide quantum dots enbedded with few-layer exfoliative graphene for an asymmetric supercapacitor: Enhanced capacitances by alternating voltage. Journal of Power Sources. Vol. 298:241–248. 2015. Elsevier BV. [Cross Ref]

            97. Li Bo, Fu Yongsheng, Xia Hui, Wang Xin. High-performance asymmetric supercapacitors based on MnFe2O4/graphene nanocomposite as anode material. Materials Letters. Vol. 122:193–196. 2014. Elsevier BV. [Cross Ref]

            98. Hu Xiaowei, Liu Sheng, Li Chenghui, Huang Jiahao, Luv Jixing, Xu Pan, Liu Jian, You Xiao-Zeng. Facile and environmentally friendly synthesis of ultrathin nickel hydroxide nanosheets with excellent supercapacitor performances. Nanoscale. Vol. 8(23):11797–11802. 2016. Royal Society of Chemistry (RSC). [Cross Ref]

            99. Chen Long, Mu Liwen, Ji Tuo, Zhu Jiahua. Boosting Energy Efficiency of Nickel Cobaltite via Interfacial Engineering in Hierarchical Supercapacitor Electrode. The Journal of Physical Chemistry C. Vol. 120(41):23377–23388. 2016. American Chemical Society (ACS). [Cross Ref]

            100. Chinecherem Nkele Agnes, I. Ezema Fabian. Diverse Synthesis and Characterization Techniques of NanoparticlesThin Films. 2021. IntechOpen. [Cross Ref]

            101. Obodo Raphael M., Mbam Sylvester M., Nsude Hope E., Ramzan M., Ezike Sabastine C., Ahmad Ishaq, Maaza M., Ezema Fabian I.. Graphene oxide enhanced Co3O4/NiO composite electrodes for supercapacitive devices applications. Applied Surface Science Advances. Vol. 9:2022. Elsevier BV. [Cross Ref]

            102. Nkele Agnes C, Nwanya Assumpta C, Nwankwo Nwankwo U, Ekwealor A B C, Osuji Rose U, Bucher R, Maaza Malik, Ezema Fabian I. Structural, optical and electrochemical properties of SILAR-deposited zirconium-doped cadmium oxide thin films. Materials Research Express. Vol. 6(9)2019. IOP Publishing. [Cross Ref]

            103. Nkele Agnes C., Chime Ugochi K., Asogwa Leonard, Nwanya Assumpta C., Nwankwo U., Ukoba K., Jen T.C., Maaza M., Ezema Fabian I.. A study on titanium dioxide nanoparticles synthesized from titanium isopropoxide under SILAR-induced gel method: Transition from anatase to rutile structure. Inorganic Chemistry Communications. Vol. 112:2020. Elsevier BV. [Cross Ref]

            104. Obodo Raphael M., Chibueze Timothy C., Ahmad Ishaq, Ekuma Chinedu E., Raji Abdulrafiu T., Maaza Malik, Ezema Fabian I.. Effects of copper ion irradiation on \[{\mathbf{C}\mathbf{u}}_{\mathbf{y}}{\mathbf{Z}\mathbf{n}}_{1-2\mathbf{y}-\mathbf{x}}{\mathbf{M}\mathbf{n}}_{\mathbf{y}}/\mathbf{G}\mathbf{O}\] supercapacitive electrodes. Journal of Applied Electrochemistry. Vol. 51(5):829–845. 2021. Springer Science and Business Media LLC. [Cross Ref]

            105. Nkele Agnes Chinecherem, Ezugwu Sabastine, Suguyima Mutsumi, Ezema Fabian I.. Structural and Electronic Properties of Metal Oxides and Their Applications in Solar CellsChemically Deposited Nanocrystalline Metal Oxide Thin Films. p. 147–163. 2021. Springer International Publishing. [Cross Ref]

            106. Nkele Agnes C., Chime Ugochi, Ezealigo Blessing, Nwanya Assumpta, Agbogu AdaN.C., Ekwealor Azubike B.C., Osuji Rose U., Ejikeme Paul M., Maaza Malik, Ezema Fabian. Enhanced electrochemical property of SILAR-deposited Mn3O4 thin films decorated on graphene. Journal of Materials Research and Technology. Vol. 9(4):9049–9058. 2020. Elsevier BV. [Cross Ref]

            107. Barik Rasmita, Ingole Pravin P.. Challenges and prospects of metal sulfide materials for supercapacitors. Current Opinion in Electrochemistry. Vol. 21:327–334. 2020. Elsevier BV. [Cross Ref]

            108. Gao Yang, Zhao Lijun. Review on recent advances in nanostructured transition-metal-sulfide-based electrode materials for cathode materials of asymmetric supercapacitors. Chemical Engineering Journal. Vol. 430:2022. Elsevier BV. [Cross Ref]

            109. Wang Xiaokun, Hao Chen, Zhang Jinsong, Ni Chenghao, Wang Xiaohong, Shen Yutang. Reasonable design and synthesis of nickel manganese sulfide nanoparticles derived from metal organic frameworks as electrode materials for supercapacitors. Journal of Power Sources. Vol. 539:2022. Elsevier BV. [Cross Ref]

            110. Lu Li, Xu Qianqian, Chen Yeke, Zhou Yujie, Jiang Tingshun, Zhao Qian. Preparation of metal sulfide electrode materials derived based on metal organic framework and application of supercapacitors. Journal of Energy Storage. Vol. 49:2022. Elsevier BV. [Cross Ref]

            111. Javed U., Dhakal G., Rabie A.M., Iqbal S., Lee Y.R., Lee J., Shim J.-J.. Heteroatom-doped reduced graphene oxide integrated with nickel-cobalt phosphide for high-performance asymmetric hybrid supercapacitors. Materials Today Nano. Vol. 18:2022. Elsevier BV. [Cross Ref]

            112. Xie Mingjiang, Zhou Meng, Zhang Yan, Du Cheng, Chen Jian, Wan Liu. Freestanding trimetallic Fe–Co–Ni phosphide nanosheet arrays as an advanced electrode for high‐performance asymmetric supercapacitors. Journal of Colloid and Interface Science. Vol. 608:79–89. 2022. Elsevier BV. [Cross Ref]

            113. Anuratha Krishnan Shanmugam, Su Ying-Zhou, Huang Min-Kung, Hsieh Chien-Kuo, Xiao Yaoming, Lin Jeng-Yu. High-performance hybrid supercapacitors based on electrodeposited amorphous bimetallic nickel cobalt phosphide nanosheets. Journal of Alloys and Compounds. Vol. 897:2022. Elsevier BV. [Cross Ref]

            114. Xiang Feifei, Dong Yingxia, Yue Xiaoqiu, Zheng Qiaoji, Lin Dunmin. High-capacity CoP-Mn3P nanoclusters heterostructures derived by Co2MnO4 as advanced electrodes for supercapacitors. Journal of Colloid and Interface Science. Vol. 611:654–661. 2022. Elsevier BV. [Cross Ref]

            115. Ji Zhenyuan, Liu Kai, Chen Lizhi, Nie Yunjin, Pasang Drolma, Yu Qiang, Shen Xiaoping, Xu Keqiang, Premlatha Subramanian. Hierarchical flower-like architecture of nickel phosphide anchored with nitrogen-doped carbon quantum dots and cobalt oxide for advanced hybrid supercapacitors. Journal of Colloid and Interface Science. Vol. 609:503–512. 2022. Elsevier BV. [Cross Ref]

            116. Xu Jing, Schulte Anna, Schönherr Holger, Jiang Xin, Yang Nianjun. Hierarchical Carbon Nanofibers@Nickel Phosphide Nanoparticles for High‐Performance Supercapacitors. Small Structures. Vol. 3(2)2022. Wiley. [Cross Ref]

            Comments

            Comment on this article