10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Probiotics and Plant Health 

      Phosphate Biofertilizers as Renewable and Safe Nutrient Suppliers for Cropping Systems: A Review

      other
      Springer Singapore

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi.

          Arbuscular mycorrhizal (AM) fungi form mutualistic, symbiotic associations with the roots of more than 80% of land plants. The fungi are incapable of completing their life cycle in the absence of a host root. Their spores can germinate and grow in the absence of a host, but their hyphal growth is very limited. Little is known about the molecular mechanisms that govern signalling and recognition between AM fungi and their host plants. In one of the first stages of host recognition, the hyphae of AM fungi show extensive branching in the vicinity of host roots before formation of the appressorium, the structure used to penetrate the plant root. Host roots are known to release signalling molecules that trigger hyphal branching, but these branching factors have not been isolated. Here we have isolated a branching factor from the root exudates of Lotus japonicus and used spectroscopic analysis and chemical synthesis to identify it as a strigolactone, 5-deoxy-strigol. Strigolactones are a group of sesquiterpene lactones, previously isolated as seed-germination stimulants for the parasitic weeds Striga and Orobanche. The natural strigolactones 5-deoxy-strigol, sorgolactone and strigol, and a synthetic analogue, GR24, induced extensive hyphal branching in germinating spores of the AM fungus Gigaspora margarita at very low concentrations.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Phosphate solubilizing bacteria and their role in plant growth promotion

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nitrogen transfer in the arbuscular mycorrhizal symbiosis.

              Most land plants are symbiotic with arbuscular mycorrhizal fungi (AMF), which take up mineral nutrients from the soil and exchange them with plants for photosynthetically fixed carbon. This exchange is a significant factor in global nutrient cycles as well as in the ecology, evolution and physiology of plants. Despite its importance as a nutrient, very little is known about how AMF take up nitrogen and transfer it to their host plants. Here we report the results of stable isotope labelling experiments showing that inorganic nitrogen taken up by the fungus outside the roots is incorporated into amino acids, translocated from the extraradical to the intraradical mycelium as arginine, but transferred to the plant without carbon. Consistent with this mechanism, the genes of primary nitrogen assimilation are preferentially expressed in the extraradical tissues, whereas genes associated with arginine breakdown are more highly expressed in the intraradical mycelium. Strong changes in the expression of these genes in response to nitrogen availability and form also support the operation of this novel metabolic pathway in the arbuscular mycorrhizal symbiosis.
                Bookmark

                Author and book information

                Book Chapter
                2017
                May 16 2017
                : 113-130
                10.1007/978-981-10-3473-2_5
                031a3297-603c-4987-b5bb-e57b616379f8

                http://www.springer.com/tdm

                History

                Comments

                Comment on this book

                Book chapters

                Similar content2,748

                Cited by1