4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      High-Pressure Shock Compression of Solids V 

      Shock Reactions of Carbon-Bearing Materials and Their Cosmochemical Significance

      other
      ,
      Springer New York

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references155

          • Record: found
          • Abstract: not found
          • Article: not found

          Interstellar polycyclic aromatic hydrocarbons - The infrared emission bands, the excitation/emission mechanism, and the astrophysical implications

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Earth's early atmosphere.

            J. Kasting (1993)
            Ideas about atmospheric composition and climate on the early Earth have evolved considerably over the last 30 years, but many uncertainties still remain. It is generally agreed that the atmosphere contained little or no free oxygen initially and that oxygen concentrations increased markedly near 2.0 billion years ago, but the precise timing of and reasons for its rise remain unexplained. Likewise, it is usually conceded that the atmospheric greenhouse effect must have been higher in the past to offset reduced solar luminosity, but the levels of atmospheric carbon dioxide and other greenhouse gases required remain speculative. A better understanding of past atmospheric evolution is important to understanding the evolution of life and to predicting whether Earth-like planets might exist elsewhere in the galaxy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life.

              Sources of organic molecules on the early Earth divide into three categories: delivery by extraterrestrial objects; organic synthesis driven by impact shocks; and organic synthesis by other energy sources (such as ultraviolet light or electrical discharges). Estimates of these sources for plausible end-member oxidation states of the early terrestrial atmosphere suggest that the heavy bombardment before 3.5 Gyr ago either produced or delivered quantities of organics comparable to those produced by other energy sources. Which sources of prebiotic organics were quantitatively dominant depends strongly on the composition of the early terrestrial atmosphere. In the event of an early strongly reducing atmosphere, production by atmospheric shocks seems to have dominated that due to electrical discharges. Organic synthesis by ultraviolet light may, in turn, have dominated shock production, but only if a long-wavelength absorber such as H2S were supplied to the atmosphere at a rate sufficient for synthesis to have been limited by ultraviolet flux, rather than by reactant abundance. In the apparently more likely case of an early terrestrial atmosphere of intermediate oxidation state, atmospheric shocks were probably of little importance for direct organic production. For [H2]/[CO2] ratios of approximately 0.1, net organic production was some three orders of magnitude lower than for reducing atmospheres, with delivery of intact exogenous organics in interplanetary dust particles (IDPs) and ultraviolet production being the most important sources. At still lower [H2]/[CO2] ratios, IDPs may have been the dominant source of prebiotic organics on the early Earth. Endogenous, exogenous and impact-shock sources of organics could each have made a significant contribution to the origins of life.
                Bookmark

                Author and book information

                Book Chapter
                2003
                : 75-116
                10.1007/978-1-4613-0011-3_4
                78996dbb-a3ad-4278-8300-cb169565ae85
                History

                Comments

                Comment on this book