3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Brain-Computer Interfaces 

      Brain damage by trauma

      edited_book
      ,
      Elsevier

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Network dysfunction after traumatic brain injury.

          Diffuse axonal injury after traumatic brain injury (TBI) produces neurological impairment by disconnecting brain networks. This structural damage can be mapped using diffusion MRI, and its functional effects can be investigated in large-scale intrinsic connectivity networks (ICNs). Here, we review evidence that TBI substantially disrupts ICN function, and that this disruption predicts cognitive impairment. We focus on two ICNs--the salience network and the default mode network. The activity of these ICNs is normally tightly coupled, which is important for attentional control. Damage to the structural connectivity of these networks produces predictable abnormalities of network function and cognitive control. For example, the brain normally shows a 'small-world architecture' that is optimized for information processing, but TBI shifts network function away from this organization. The effects of TBI on network function are likely to be complex, and we discuss how advanced approaches to modelling brain dynamics can provide insights into the network dysfunction. We highlight how structural network damage caused by axonal injury might interact with neuroinflammation and neurodegeneration in the pathogenesis of Alzheimer disease and chronic traumatic encephalopathy, which are late complications of TBI. Finally, we discuss how network-level diagnostics could inform diagnosis, prognosis and treatment development following TBI.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            White matter damage and cognitive impairment after traumatic brain injury

            White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury and white matter damage is likely to be complex. We applied a flexible technique—tract-based spatial statistics—to explore whether damage to specific white matter tracts is associated with particular patterns of cognitive impairment. The commonly affected domains of memory, executive function and information processing speed were investigated in 28 patients in the post-acute/chronic phase following traumatic brain injury and in 26 age-matched controls. Analysis of fractional anisotropy and diffusivity maps revealed widespread differences in white matter integrity between the groups. Patients showed large areas of reduced fractional anisotropy, as well as increased mean and axial diffusivities, compared with controls, despite the small amounts of cortical and white matter damage visible on standard imaging. A stratified analysis based on the presence or absence of microbleeds (a marker of diffuse axonal injury) revealed diffusion tensor imaging to be more sensitive than gradient-echo imaging to white matter damage. The location of white matter abnormality predicted cognitive function to some extent. The structure of the fornices was correlated with associative learning and memory across both patient and control groups, whilst the structure of frontal lobe connections showed relationships with executive function that differed in the two groups. These results highlight the complexity of the relationships between white matter structure and cognition. Although widespread and, sometimes, chronic abnormalities of white matter are identifiable following traumatic brain injury, the impact of these changes on cognitive function is likely to depend on damage to key pathways that link nodes in the distributed brain networks supporting high-level cognitive functions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Salience network integrity predicts default mode network function after traumatic brain injury.

              Efficient behavior involves the coordinated activity of large-scale brain networks, but the way in which these networks interact is uncertain. One theory is that the salience network (SN)--which includes the anterior cingulate cortex, presupplementary motor area, and anterior insulae--regulates dynamic changes in other networks. If this is the case, then damage to the structural connectivity of the SN should disrupt the regulation of associated networks. To investigate this hypothesis, we studied a group of 57 patients with cognitive impairments following traumatic brain injury (TBI) and 25 control subjects using the stop-signal task. The pattern of brain activity associated with stop-signal task performance was studied by using functional MRI, and the structural integrity of network connections was quantified by using diffusion tensor imaging. Efficient inhibitory control was associated with rapid deactivation within parts of the default mode network (DMN), including the precuneus and posterior cingulate cortex. TBI patients showed a failure of DMN deactivation, which was associated with an impairment of inhibitory control. TBI frequently results in traumatic axonal injury, which can disconnect brain networks by damaging white matter tracts. The abnormality of DMN function was specifically predicted by the amount of white matter damage in the SN tract connecting the right anterior insulae to the presupplementary motor area and dorsal anterior cingulate cortex. The results provide evidence that structural integrity of the SN is necessary for the efficient regulation of activity in the DMN, and that a failure of this regulation leads to inefficient cognitive control.
                Bookmark

                Author and book information

                Book Chapter
                2020
                : 39-49
                10.1016/B978-0-444-63934-9.00005-6
                7b6a139c-82f2-467a-9a16-fae144b148cc
                History

                Comments

                Comment on this book

                Book chapters

                Similar content1,730

                Cited by3