3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Molecular Targeting and Signal Transduction 

      Basis and Importance of SRC as a Target in Cancer

      other
      Kluwer Academic Publishers

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references160

          • Record: found
          • Abstract: found
          • Article: not found

          Oncogenic kinase signalling.

          Protein-tyrosine kinases (PTKs) are important regulators of intracellular signal-transduction pathways mediating development and multicellular communication in metazoans. Their activity is normally tightly controlled and regulated. Perturbation of PTK signalling by mutations and other genetic alterations results in deregulated kinase activity and malignant transformation. The lipid kinase phosphoinositide 3-OH kinase (PI(3)K) and some of its downstream targets, such as the protein-serine/threonine kinases Akt and p70 S6 kinase (p70S6K), are crucial effectors in oncogenic PTK signalling. This review emphasizes how oncogenic conversion of protein kinases results from perturbation of the normal autoinhibitory constraints on kinase activity and provides an update on our knowledge about the role of deregulated PI(3)K/Akt and mammalian target of rapamycin/p70S6K signalling in human malignancies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice.

            To understand the normal, physiological role of the c-src proto-oncogene, a null mutation was introduced into the gene by homologous recombination in mouse embryonic stem cells. Two independent targeted clones were used to generate chimeras that transmitted the mutated allele to their offspring. Intercrossing of heterozygotes gave rise to live born homozygotes, but most of these mice died within the first few weeks of birth. Histological and hematological examination of the homozygous mutants did not reveal detectable abnormalities in the brain or platelets, where src is most highly expressed. However, these mutants were deficient in bone remodeling, indicating impaired osteoclast function, and developed osteopetrosis. These results demonstrate that src is not required for general cell viability (possibly because of functional overlap with other tyrosine kinases related to src) and uncover an essential role for src in bone formation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src.

              The phosphorylation of protein tyrosine kinases (PTKs) on tyrosine residues is a critical regulatory event that modulates catalytic activity and triggers the physical association of PTKs with Src homology 2 (SH2)-containing proteins. The integrin-linked focal adhesion kinase, pp125FAK, exhibits extracellular matrix-dependent phosphorylation on tyrosine and physically associates with two nonreceptor PTKs, pp60src and pp59fyn, via their SH2 domains. Herein, we identify Tyr-397 as the major site of tyrosine phosphorylation on pp125FAK both in vivo and in vitro. Tyrosine 397 is located at the juncture of the N-terminal and catalytic domains, a novel site for PTK autophosphorylation. Mutation of Tyr-397 to a nonphosphorylatable residue dramatically impairs the phosphorylation of pp125FAK on tyrosine in vivo and in vitro. The mutation of Tyr-397 to Phe also inhibits the formation of stable complexes with pp60src in cells expressing Src and FAK397F, suggesting that autophosphorylation of pp125FAK may regulate the association of pp125FAK with Src family kinases in vivo. The identification of Tyr-397 as a major site for FAK autophosphorylation provides one of the first examples of a cellular protein containing a high-affinity binding site for a Src family kinase SH2 domain. This finding has implications for models describing the mechanisms of action of pp125FAK, the regulation of the Src family of PTKs, and signal transduction through the integrins.
                Bookmark

                Author and book information

                Book Chapter
                : 89-119
                10.1007/1-4020-7847-1_6
                801149b7-e34d-4fcf-81f4-3e34f2583bf1
                History

                Comments

                Comment on this book