5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Retinal Degenerative Diseases 

      Factor XIIIA Induction in the Retina and Optic Nerve After Optic Nerve Lesion in Goldfish

      other
      , , ,
      Springer US

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Role of factor XIII in fibrin clot formation and effects of genetic polymorphisms.

          Factor XIII and fibrinogen are unusual among clotting factors in that neither is a serine protease. Fibrin is the main protein constituent of the blood clot, which is stabilized by factor XIIIa through an amide or isopeptide bond that ligates adjacent fibrin monomers. Many of the structural and functional features of factor XIII and fibrin(ogen) have been elucidated by protein and gene analysis, site-directed mutagenesis, and x-ray crystallography. However, some of the molecular aspects involved in the complex processes of insoluble fibrin formation in vivo and in vitro remain unresolved. The findings of a relationship between fibrinogen, factor XIII, and cardiovascular or other thrombotic disorders have focused much attention on these 2 proteins. Of particular interest are associations between common variations in the genes of factor XIII and altered risk profiles for thrombosis. Although there is much debate regarding these observations, the implications for our understanding of clot formation and therapeutic intervention may be of major importance. In this review, we have summarized recent findings on the structure and function of factor XIII. This is followed by a review of the effects of genetic polymorphisms on protein structure/function and their relationship to disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Factor XIII deficiency.

            Inherited factor XIII (FXIII) deficiency is a rare bleeding disorder that can present with umbilical bleeding during the neonatal period, delayed soft tissue bruising, mucosal bleeding and life-threatening intracranial haemorrhage. FXIII deficiency has also been associated with poor wound healing and recurrent miscarriages. FXIII plays an integral role in haemostasis by catalysing the cross-linking of fibrin, platelet membrane and matrix proteins throughout thrombus formation, thus stabilizing the blood clot. The molecular basis of FXIII deficiency is characterized by a high degree of heterogeneity, which contributes to the different clinical manifestations of the disease. There have been more than 60 FXIII mutations identified in the current literature. In addition, single nucleotide polymorphisms have been described, some of which have been shown to affect FXIII activity, contributing further to the heterogeneity in patient presentation and severity of clinical symptoms. Although there is a lifelong risk of bleeding, the prognosis is excellent when current prophylactic treatment is available using cryoprecipitate or plasma-derived FXIII concentrate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Upregulation of IGF-I in the goldfish retinal ganglion cells during the early stage of optic nerve regeneration.

              Goldfish retinal ganglion cells (RGCs) can regrow their axons after optic nerve injury. However, the reason why goldfish RGCs can regenerate after nerve injury is largely unknown at the molecular level. To investigate regenerative properties of goldfish RGCs, we divided the RGC regeneration process into two components: (1) RGC survival, and (2) axonal elongation processes. To characterize the RGC survival signaling pathway after optic nerve injury, we investigated cell survival/death signals such as Bcl-2 family members in the goldfish retina. Amounts of phospho-Akt (p-Akt) and phospho-Bad (p-Bad) in the goldfish retina rapidly increased four- to five-fold at the protein level by 3-5 days after nerve injury. Subsequently, Bcl-2 levels increased 1.7-fold, accompanied by a slight reduction in caspase-3 activity 10-20 days after injury. Furthermore, level of insulin-like growth factor-I (IGF-I), which activates the phosphatidyl inositol-3-kinase (PI3K)/Akt system, increased 2-3 days earlier than that of p-Akt in the goldfish retina. The cellular localization of these molecular changes was limited to RGCs. IGF-I treatment significantly induced phosphorylation of Akt, and strikingly induced neurite outgrowth in the goldfish retina in vitro. On the contrary, addition of the PI3K inhibitor wortmannin, and IGF-I antibody inhibited Akt phosphorylation and neurite outgrowth in an explant culture. Thus, we demonstrated, for the first time, the signal cascade for early upregulation of IGF-I, leading to RGC survival and axonal regeneration in adult goldfish retinas through PI3K/Akt system after optic nerve injury. The present data strongly indicate that IGF-I is one of the most important molecules for controlling regeneration of RGCs after optic nerve injury.
                Bookmark

                Author and book information

                Book Chapter
                2012
                November 11 2011
                : 443-448
                10.1007/978-1-4614-0631-0_56
                9a6511a6-13d2-4646-a18d-2d3da34c4905
                History

                Comments

                Comment on this book

                Book chapters

                Similar content3,191

                Cited by2