2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Transient Receptor Potential Channels 

      TRP Channels in Vascular Endothelial Cells

      other
      ,
      Springer Netherlands

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          TRP channels.

          The TRP (Transient Receptor Potential) superfamily of cation channels is remarkable in that it displays greater diversity in activation mechanisms and selectivities than any other group of ion channels. The domain organizations of some TRP proteins are also unusual, as they consist of linked channel and enzyme domains. A unifying theme in this group is that TRP proteins play critical roles in sensory physiology, which include contributions to vision, taste, olfaction, hearing, touch, and thermo- and osmosensation. In addition, TRP channels enable individual cells to sense changes in their local environment. Many TRP channels are activated by a variety of different stimuli and function as signal integrators. The TRP superfamily is divided into seven subfamilies: the five group 1 TRPs (TRPC, TRPV, TRPM, TRPN, and TRPA) and two group 2 subfamilies (TRPP and TRPML). TRP channels are important for human health as mutations in at least four TRP channels underlie disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity.

            Ca2+-permeable channels that are involved in the responses of mammalian cells to changes in extracellular osmolarity have not been characterized at the molecular level. Here we identify a new TRP (transient receptor potential)-like channel protein, OTRPC4, that is expressed at high levels in the kidney, liver and heart. OTRPC4 forms Ca2+-permeable, nonselective cation channels that exhibit spontaneous activity in isotonic media and are rapidly activated by decreases in, and are inhibited by increases in, extracellular osmolarity. Changes in osmolarity of as little as 10% result in significant changes in intracellular Ca2+ concentration. We propose that OTRPC4 is a candidate for a molecular sensor that confers osmosensitivity on mammalian cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Impaired pressure sensation in mice lacking TRPV4.

              The sensation of pressure, mechanosensation, in vertebrates remains poorly understood on the molecular level. The ion channel TRPV4 is in the TRP family and is a candidate for a mechanosensitive calcium-permeable channel. It is located in dorsal root ganglia. In the present study, we show that disrupting the Trpv4 gene in mice markedly reduced the sensitivity of the tail to pressure and acidic nociception. The threshold to noxious stimuli and the conduction velocity of myelinated nerve responding to stimuli were also impaired. Activation of unmyelinated nerve was undetected. However, the mouse still retained olfaction, taste sensation, and heat avoidance. The TRPV4 channel expressed in vitro in Chinese hamster ovary cells was opened by low pH, citrate, and inflation but not by heat or capsaicin. These data identify the TRPV4 channel as essential for the normal detection of pressure and as a receptor of the high-threshold mechanosensory complex.
                Bookmark

                Author and book information

                Book Chapter
                2011
                December 24 2010
                : 759-780
                10.1007/978-94-007-0265-3_40
                c655903e-d19d-46a9-8fb0-330106d2985d
                History

                Comments

                Comment on this book

                Book chapters

                Similar content3,748

                Cited by1