5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Phoma: Diversity, Taxonomy, Bioactivities, and Nanotechnology 

      The Genus Phoma: What We Know and What We Need to Know?

      other
      , ,
      Springer International Publishing

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi.

          Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera

            Fungal taxonomists routinely encounter problems when dealing with asexual fungal species due to poly- and paraphyletic generic phylogenies, and unclear species boundaries. These problems are aptly illustrated in the genus Phoma. This phytopathologically significant fungal genus is currently subdivided into nine sections which are mainly based on a single or just a few morphological characters. However, this subdivision is ambiguous as several of the section-specific characters can occur within a single species. In addition, many teleomorph genera have been linked to Phoma, three of which are recognised here. In this study it is attempted to delineate generic boundaries, and to come to a generic circumscription which is more correct from an evolutionary point of view by means of multilocus sequence typing. Therefore, multiple analyses were conducted utilising sequences obtained from 28S nrDNA (Large Subunit - LSU), 18S nrDNA (Small Subunit - SSU), the Internal Transcribed Spacer regions 1 & 2 and 5.8S nrDNA (ITS), and part of the β-tubulin (TUB) gene region. A total of 324 strains were included in the analyses of which most belonged to Phoma taxa, whilst 54 to related pleosporalean fungi. In total, 206 taxa were investigated, of which 159 are known to have affinities to Phoma. The phylogenetic analysis revealed that the current Boeremaean subdivision is incorrect from an evolutionary point of view, revealing the genus to be highly polyphyletic. Phoma species are retrieved in six distinct clades within the Pleosporales, and appear to reside in different families. The majority of the species, however, including the generic type, clustered in a recently established family, Didymellaceae. In the second part of this study, the phylogenetic variation of the species and varieties in this clade was further assessed. Next to the genus Didymella, which is considered to be the sole teleomorph of Phoma s. str., we also retrieved taxa belonging to the teleomorph genera Leptosphaerulina and Macroventuria in this clade. Based on the sequence data obtained, the Didymellaceae segregate into at least 18 distinct clusters, of which many can be associated with several specific taxonomic characters. Four of these clusters were defined well enough by means of phylogeny and morphology, so that the associated taxa could be transferred to separate genera. Aditionally, this study addresses the taxonomic description of eight species and two varieties that are novel to science, and the recombination of 61 additional taxa.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus.

              We report extracellular synthesis of silver nanoparticles (Ag-NPs) from Phoma glomerata and its efficacy against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The bacteria exhibiting resistance to various antibiotics showed remarkable sensitivity, when used in combination of antibiotics and Ag-NPs. Biosynthesis of Ag-NPs was carried out by challenging the fungal cell filtrate with 1 mmol l(-1) silver nitrate. The Ag-NPs were characterized with the help of UV-Visible spectrophotometer and Fourier transform infrared spectroscopy. Scanning electron microscopy was carried out to detect the size of Ag-NPs. Evaluation of the combined effect(s) was studied by disc diffusion method against E. coli, Staph. aureus and Ps. aeruginosa. The biosynthesis route seems to be eco-friendly and easy to scale up the process. Thus, these Ag-NPs may prove as a better candidate for drugs and can potentially eliminate the problem of chemical agents because of their biogenic nature. The bacterial resistance against antibiotics has been increasing with alarming rate. To overcome this problem, there is a pressing need to develop bactericidal agents. Ag-NPs may prove to be an answer to drug-resistant bacteria.
                Bookmark

                Author and book information

                Book Chapter
                2022
                November 20 2021
                : 3-11
                10.1007/978-3-030-81218-8_1
                e699c021-f3f7-484c-8525-12eee8a7638f
                History

                Comments

                Comment on this book

                Book chapters

                Similar content2,190

                Cited by1