Fraud events are increasing on day to day bases. Credit card fraud is the most frequent fraud that is making a big financial loss on a global level. Researchers have implemented many machine learning algorithms to detect the credit card frauds. This research has briefly described several algorithms and compares the performance of Random Forest, Naïve Bayes, K-Nearest Neighbor, Logistic Regression and Multilayer Perceptron. Algorithms are also used to classify the real transactions or fraudulent transactions. These datasets are compared on the basis of accuracy, precision, recall & false positive rate. Comparison results show that Random Forest performs best in credit card fraud detection dataset among others. Research shows that any ML algorithm can be used to demonstrate the classification of fraud detection.