66
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Perinatal Exposure to High-Fat Diet Programs Energy Balance, Metabolism and Behavior in Adulthood

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The perinatal environment plays an important role in programming many aspects of physiology and behavior including metabolism, body weight set point, energy balance regulation and predisposition to mental health-related disorders such as anxiety, depression and attention deficit hyperactivity disorder. Maternal health and nutritional status heavily influence the early environment and have a long-term impact on critical central pathways, including the melanocortinergic, serotonergic system and dopaminergic systems. Evidence from a variety of animal models including rodents and nonhuman primates indicates that exposure to maternal high-fat diet (HFD) consumption programs offspring for increased risk of adult obesity. Hyperphagia and increased preference for fatty and sugary foods are implicated as mechanisms for the increased obesity risk. The effects of maternal HFD consumption on energy expenditure are unclear, and future studies need to address the impact of perinatal HFD exposure on this important component of energy balance regulation. Recent evidence from animal models also indicates that maternal HFD consumption increases the risk of offspring developing mental health-related disorders such as anxiety. Potential mechanisms for perinatal HFD programming of neural pathways include circulating factors, such as hormones (leptin, insulin), nutrients (fatty acids, triglycerides and glucose) and inflammatory cytokines. As maternal HFD consumption and obesity are common and rapidly increasing, we speculate that future generations will be at increased risk for both metabolic and mental health disorders. Thus, it is critical that future studies identify therapeutic strategies that are effective at preventing maternal HFD-induced malprogramming.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Fetal origins of obesity.

          The worldwide epidemic of obesity continues unabated. Obesity is notoriously difficult to treat, and, thus, prevention is critical. A new paradigm for prevention, which evolved from the notion that environmental factors in utero may influence lifelong health, has emerged in recent years. A large number of epidemiological studies have demonstrated a direct relationship between birth weight and BMI attained in later life. Although the data are limited by lack of information on potential confounders, these associations seem robust. Possible mechanisms include lasting changes in proportions of fat and lean body mass, central nervous system appetite control, and pancreatic structure and function. Additionally, lower birth weight seems to be associated with later risk for central obesity, which also confers increased cardiovascular risk. This association may be mediated through changes in the hypothalamic pituitary axis, insulin secretion and sensing, and vascular responsiveness. The combination of lower birth weight and higher attained BMI is most strongly associated with later disease risk. We are faced with the seeming paradox of increased adiposity at both ends of the birth weight spectrum-higher BMI with higher birth weight and increased central obesity with lower birth weight. Future research on molecular genetics, intrauterine growth, growth trajectories after birth, and relationships of fat and lean mass will elucidate relationships between early life experiences and later body proportions. Prevention of obesity starting in childhood is critical and can have lifelong, perhaps multigenerational, impact.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates.

            Maternal obesity is thought to increase the offspring's risk of juvenile obesity and metabolic diseases; however, the mechanism(s) whereby excess maternal nutrition affects fetal development remain poorly understood. Here, we investigated in nonhuman primates the effect of chronic high-fat diet (HFD) on the development of fetal metabolic systems. We found that fetal offspring from both lean and obese mothers chronically consuming a HFD had a 3-fold increase in liver triglycerides (TGs). In addition, fetal offspring from HFD-fed mothers (O-HFD) showed increased evidence of hepatic oxidative stress early in the third trimester, consistent with the development of nonalcoholic fatty liver disease (NAFLD). O-HFD animals also exhibited elevated hepatic expression of gluconeogenic enzymes and transcription factors. Furthermore, fetal glycerol levels were 2-fold higher in O-HFD animals than in control fetal offspring and correlated with maternal levels. The increased fetal hepatic TG levels persisted at P180, concurrent with a 2-fold increase in percent body fat. Importantly, reversing the maternal HFD to a low-fat diet during a subsequent pregnancy improved fetal hepatic TG levels and partially normalized gluconeogenic enzyme expression, without changing maternal body weight. These results suggest that a developing fetus is highly vulnerable to excess lipids, independent of maternal diabetes and/or obesity, and that exposure to this may increase the risk of pediatric NAFLD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enduring consequences of maternal obesity for brain inflammation and behavior of offspring.

              Obesity is well characterized as a systemic inflammatory condition, and is also associated with cognitive disruption, suggesting a link between the two. We assessed whether peripheral inflammation in maternal obesity may be transferred to the offspring brain, in particular, the hippocampus, and thereby result in cognitive dysfunction. Rat dams were fed a high-saturated-fat diet (SFD), a high-trans-fat diet (TFD), or a low-fat diet (LFD) for 4 wk prior to mating, and remained on the diet throughout pregnancy and lactation. SFD/TFD exposure significantly increased body weight in both dams and pups compared to controls. Microglial activation markers were increased in the hippocampus of SFD/TFD pups at birth. At weaning and in adulthood, proinflammatory cytokine expression was strikingly increased in the periphery and hippocampus following a bacterial challenge [lipopolysaccharide (LPS)] in the SFD/TFD groups compared to controls. Microglial activation within the hippocampus was also increased basally in SFD rats, suggesting a chronic priming of the cells. Finally, there were marked changes in anxiety and spatial learning in SFD/TFD groups. These effects were all observed in adulthood, even after the pups were placed on standard chow at weaning, suggesting these outcomes were programmed early in life.
                Bookmark

                Author and article information

                Journal
                NEN
                Neuroendocrinology
                10.1159/issn.0028-3835
                Neuroendocrinology
                S. Karger AG
                0028-3835
                1423-0194
                2011
                February 2011
                13 November 2010
                : 93
                : 1
                : 1-8
                Affiliations
                Department of Neuroscience, Oregon National Primate Research Center, Beaverton, Oreg., USA
                Author notes
                *Elinor L. Sullivan, PhD, Department of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Ave, Beaverton, OR 97006 (USA), Tel. +1 503 690 5510, Fax +1 503 690 5384, E-Mail sullivel@ohsu.edu
                Article
                322038 PMC3700139 Neuroendocrinology 2011;93:1–8
                10.1159/000322038
                PMC3700139
                21079387
                cf70ee01-5741-4ab2-a4e2-6a01c14a1abf
                © 2010 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 19 July 2010
                : 22 September 2010
                Page count
                Figures: 1, Pages: 8
                Categories
                At the Cutting Edge

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Maternal high-fat diet,Energy balance,Metabolic imprinting,Obesity,Energy expenditure,Anxiety,Inflammation

                Comments

                Comment on this article