26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      War-induced collapse and asymmetric recovery of large-mammal populations in Gorongosa National Park, Mozambique

      , , , ,
      PLOS ONE
      Public Library of Science (PLoS)

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          How do large-mammal communities reassemble after being pushed to the brink of extinction? Few data are available to answer this question, as it is rarely possible to document both the decline and recovery of wildlife populations. Here we present the first in-depth quantitative account of war-induced collapse and postwar recovery in a diverse assemblage of large herbivores. In Mozambique’s Gorongosa National Park, we assembled data from 15 aerial wildlife counts conducted before (1968–1972) and after (1994–2018) the Mozambican Civil War (1977–1992). Pre-war total biomass density exceeded 9,000 kg km-2, but populations declined by >90% during the war. Since 1994, total biomass has substantially recovered, but species composition has shifted dramatically. Formerly dominant large herbivores—including elephant (Loxodonta africana), hippo (Hippopotamus amphibius), buffalo (Syncerus caffer), zebra (Equus quagga), and wildebeest (Connochaetes taurinus)—are now outnumbered by waterbuck (Kobus ellipsiprymnus) and other small to mid-sized antelopes. Waterbuck abundance has increased by an order of magnitude, with >55,000 individuals accounting for >74% of large-herbivore biomass in 2018. By contrast, elephant, hippo, and buffalo, which totaled 89% of pre-war biomass, now comprise just 23%. These trends mostly reflect natural population growth following the resumption of protection under the Gorongosa Restoration Project; reintroductions (465 animals of 7 species) accounted for a comparatively small fraction of the total numerical increase. Waterbuck are growing logistically, apparently as-yet unchecked by interspecific competition or predation (apex-carnivore abundance has been low throughout the post-war interval), suggesting a community still in flux. Most other herbivore populations have increased post-war, albeit at differing rates. Armed conflict remains a poorly understood driver of ecological change; our results demonstrate the potential for rapid post-war recovery of large-herbivore biomass, given sound protected-area management, but also suggest that restoration of community structure takes longer and may require active intervention.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Article: not found

          PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multiple causes of high extinction risk in large mammal species.

            Many large animal species have a high risk of extinction. This is usually thought to result simply from the way that species traits associated with vulnerability, such as low reproductive rates, scale with body size. In a broad-scale analysis of extinction risk in mammals, we find two additional patterns in the size selectivity of extinction risk. First, impacts of both intrinsic and environmental factors increase sharply above a threshold body mass around 3 kilograms. Second, whereas extinction risk in smaller species is driven by environmental factors, in larger species it is driven by a combination of environmental factors and intrinsic traits. Thus, the disadvantages of large size are greater than generally recognized, and future loss of large mammal biodiversity could be far more rapid than expected.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Patterns of predation in a diverse predator-prey system.

              There are many cases where animal populations are affected by predators and resources in terrestrial ecosystems, but the factors that determine when one or the other predominates remain poorly understood. Here we show, using 40 years of data from the highly diverse mammal community of the Serengeti ecosystem, East Africa, that the primary cause of mortality for adults of a particular species is determined by two factors--the species diversity of both the predators and prey and the body size of that prey species relative to other prey and predators. Small ungulates in Serengeti are exposed to more predators, owing to opportunistic predation, than are larger ungulates; they also suffer greater predation rates, and experience strong predation pressure. A threshold occurs at prey body sizes of approximately 150 kg, above which ungulate species have few natural predators and exhibit food limitation. Thus, biodiversity allows both predation (top-down) and resource limitation (bottom-up) to act simultaneously to affect herbivore populations. This result may apply generally in systems where there is a diversity of predators and prey.
                Bookmark

                Author and article information

                Journal
                PLOS ONE
                PLoS ONE
                Public Library of Science (PLoS)
                1932-6203
                March 13 2019
                March 13 2019
                : 14
                : 3
                : e0212864
                Article
                10.1371/journal.pone.0212864
                dd8bb625-d33b-4824-9e2b-56b5f4ce0cce
                © 2019

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article