22
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Regulation of Matrix Metalloproteinase (Matrixin) Genes in Blood Vessels: A Multi-Step Recruitment Model for Pathological Remodelling

      ,
      Journal of Vascular Research
      S. Karger AG

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Matrix metalloproteinases (MMPs; matrixins) are a family of structurally related enzymes that collectively promote turnover of all components of the extracellular matrix. Matrix turnover is required for vascular repair, but, if excessive, leads to pathologies that include aneurysm formation and atherosclerotic plaque instability. We review the positive and negative regulation of metalloproteinase gene induction. We propose that multiple steps of gene induction recruit a wider spectrum of MMPs, which may ultimately lead to a transition from matrix turnover to matrix destruction. Studying the detailed mechanisms involved may suggest possibilities for intervening selectively against pathological MMP induction.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          MAP3K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1.

          Several members of the tumour-necrosis/nerve-growth factor (TNF/NGF) receptor family activate the transcription factor NF-kappaB through a common adaptor protein, Traf2 (refs 1-5), whereas the interleukin 1 type-I receptor activates NF-kappaB independently of Traf2 (ref. 4). We have now cloned a new protein kinase, NIK, which binds to Traf2 and stimulates NF-kappaB activity. This kinase shares sequence similarity with several MAPKK kinases. Expression in cells of kinase-deficient NIK mutants fails to stimulate NF-kappaB and blocks its induction by TNF, by either of the two TNF receptors or by the receptor CD95 (Fas/Apo-1), and by TRADD, RIP and MORT1/FADD, which are adaptor proteins that bind to these receptors. It also blocked NF-kappaB induction by interleukin-1. Our findings indicate that NIK participates in an NF-kappaB-inducing signalling cascade common to receptors of the TNF/NGF family and to the interleukin-1 type-I receptor.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            STATs: signal transducers and activators of transcription.

            J Ihle (1996)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules.

              Membrane type 1 matrix metalloproteinase (MT1-MMP) is expressed on cancer cell membranes and activates the zymogen of MMP-2 (gelatinase A). We have recently isolated MT1-MMP complexed with tissue inhibitor of metalloproteinases 2 (TIMP-2) and demonstrated that MT1-MMP exhibits gelatinolytic activity by gelatin zymography (Imai, K., Ohuchi, E., Aoki, T., Nomura, H., Fujii, Y., Sato, H., Seiki, M., and Okada, Y. (1996) Cancer Res. 56, 2707-2710). In the present study, we have further purified to homogeneity a deletion mutant of MT1-MMP lacking the transmembrane domain (DeltaMT1) and native MT1-MMP secreted from a human breast carcinoma cell line (MDA-MB-231 cells) and examined their substrate specificities. Both proteinases are active, without any treatment for activation, and digest type I (guinea pig), II (bovine), and III (human) collagens into characteristic 3/4 and 1/4 fragments. The cleavage sites of type I collagen are the Gly775-Ile776 bond for alpha1(I) chains and the Gly775-Leu776 and Gly781-Ile782 bonds for alpha2(I) chains. DeltaMT1 hydrolyzes type I collagen 6.5- or 4-fold more preferentially than type II or III collagen, whereas MMP-1 (tissue collagenase) digests type III collagen more efficiently than the other two collagens. Quantitative analyses of the activity of DeltaMT1 and MMP-1 indicate that DeltaMT1 is 5-7.1-fold less efficient at cleaving type I collagen. On the other hand, gelatinolytic activity of DeltaMT1 is 8-fold higher than that of MMP-1. DeltaMT1 also digests cartilage proteoglycan, fibronectin, vitronectin and laminin-1 as well as alpha1-proteinase inhibitor and alpha2-macroglobulin. The activity of DeltaMT1 on type I collagen is synergistically increased with co-incubation with MMP-2. These results indicate that MT1-MMP is an extracellular matrix-degrading enzyme sharing the substrate specificity with interstitial collagenases, and suggest that MT1-MMP plays a dual role in pathophysiological digestion of extracellular matrix through direct cleavage of the substrates and activation of proMMP-2.
                Bookmark

                Author and article information

                Journal
                Journal of Vascular Research
                J Vasc Res
                S. Karger AG
                1018-1172
                1423-0135
                August 1 2003
                2003
                September 26 2003
                : 40
                : 4
                : 329-343
                Article
                10.1159/000072697
                e8d95ac9-1000-4051-8357-d82ac29d6cea
                © 2003

                https://www.karger.com/Services/SiteLicenses

                https://www.karger.com/Services/SiteLicenses

                History

                Comments

                Comment on this article