55
views
0
recommends
+1 Recommend
3 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rapid phenotypic evolution in multidrug-resistant Klebsiella pneumoniae hospital outbreak strains

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Carbapenem-resistant Klebsiella pneumoniae (CRKP) increasingly cause high-mortality outbreaks in hospital settings globally. Following a patient fatality at a hospital in Beijing due to a bla KPC-2-positive CRKP infection, close monitoring was put in place over the course of 14 months to characterize all bla KPC-2-positive CRKP in circulation in the hospital. Whole genome sequences were generated for 100 isolates from bla KPC-2-positive isolates from infected patients, carriers and the hospital environment. Phylogenetic analyses identified a closely related cluster of 82 sequence type 11 (ST11) isolates circulating in the hospital for at least a year prior to admission of the index patient. The majority of inferred transmissions for these isolates involved patients in intensive care units. Whilst the 82 ST11 isolates collected during the surveillance effort all had closely related chromosomes, we observed extensive diversity in their antimicrobial resistance (AMR) phenotypes. We were able to reconstruct the major genomic changes underpinning this variation in AMR profiles, including multiple gains and losses of entire plasmids and recombination events between plasmids, including transposition of bla KPC-2. We also identified specific cases where variation in plasmid copy number correlated with the level of phenotypic resistance to drugs, suggesting that the number of resistance elements carried by a strain may play a role in determining the level of AMR. Our findings highlight the epidemiological value of whole genome sequencing for investigating multi-drug-resistant hospital infections and illustrate that standard typing schemes cannot capture the extraordinarily fast genome evolution of CRKP isolates.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Fast gapped-read alignment with Bowtie 2.

          As the rate of sequencing increases, greater throughput is demanded from read aligners. The full-text minute index is often used to make alignment very fast and memory-efficient, but the approach is ill-suited to finding longer, gapped alignments. Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies

            Motivation: Phylogenies are increasingly used in all fields of medical and biological research. Moreover, because of the next-generation sequencing revolution, datasets used for conducting phylogenetic analyses grow at an unprecedented pace. RAxML (Randomized Axelerated Maximum Likelihood) is a popular program for phylogenetic analyses of large datasets under maximum likelihood. Since the last RAxML paper in 2006, it has been continuously maintained and extended to accommodate the increasingly growing input datasets and to serve the needs of the user community. Results: I present some of the most notable new features and extensions of RAxML, such as a substantial extension of substitution models and supported data types, the introduction of SSE3, AVX and AVX2 vector intrinsics, techniques for reducing the memory requirements of the code and a plethora of operations for conducting post-analyses on sets of trees. In addition, an up-to-date 50-page user manual covering all new RAxML options is available. Availability and implementation: The code is available under GNU GPL at https://github.com/stamatak/standard-RAxML. Contact: alexandros.stamatakis@h-its.org Supplementary information: Supplementary data are available at Bioinformatics online.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing.

              The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.
                Bookmark

                Author and article information

                Journal
                Microbial Genomics
                Microbiology Society
                2057-5858
                April 02 2019
                Affiliations
                [1 ] 1​UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK
                [2 ] 2​Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, PR China
                [3 ] 3​Nuffield Department of Medicine, John Radcliffe Hospital, Oxford OX3 7BN, UK
                [4 ] 4​Infectious Diseases and Environmental Health, Norwegian Institute of Public Health, Lovisenberggata 8, 0456, Oslo, Norway
                [5 ] 5​Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
                [6 ] 6​School of Life Sciences and the Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
                Article
                10.1099/mgen.0.000263
                bbbf0cc9-0619-4e11-9886-ddf11e732a21
                © 2019
                History

                Comments

                Comment on this article