90
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cross-species affective neuroscience decoding of the primal affective experiences of humans and related animals.

      1
      PloS one
      Public Library of Science (PLoS)

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The issue of whether other animals have internally felt experiences has vexed animal behavioral science since its inception. Although most investigators remain agnostic on such contentious issues, there is now abundant experimental evidence indicating that all mammals have negatively and positively-valenced emotional networks concentrated in homologous brain regions that mediate affective experiences when animals are emotionally aroused. That is what the neuroscientific evidence indicates.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Interoception: the sense of the physiological condition of the body.

          Converging evidence indicates that primates have a distinct cortical image of homeostatic afferent activity that reflects all aspects of the physiological condition of all tissues of the body. This interoceptive system, associated with autonomic motor control, is distinct from the exteroceptive system (cutaneous mechanoreception and proprioception) that guides somatic motor activity. The primary interoceptive representation in the dorsal posterior insula engenders distinct highly resolved feelings from the body that include pain, temperature, itch, sensual touch, muscular and visceral sensations, vasomotor activity, hunger, thirst, and 'air hunger'. In humans, a meta-representation of the primary interoceptive activity is engendered in the right anterior insula, which seems to provide the basis for the subjective image of the material self as a feeling (sentient) entity, that is, emotional awareness.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Subcortical and cortical brain activity during the feeling of self-generated emotions.

            In a series of [15O]PET experiments aimed at investigating the neural basis of emotion and feeling, 41 normal subjects recalled and re-experienced personal life episodes marked by sadness, happiness, anger or fear. We tested the hypothesis that the process of feeling emotions requires the participation of brain regions, such as the somatosensory cortices and the upper brainstem nuclei, that are involved in the mapping and/or regulation of internal organism states. Such areas were indeed engaged, underscoring the close relationship between emotion and homeostasis. The findings also lend support to the idea that the subjective process of feeling emotions is partly grounded in dynamic neural maps, which represent several aspects of the organism's continuously changing internal state.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain.

                Bookmark

                Author and article information

                Journal
                PLoS One
                PloS one
                Public Library of Science (PLoS)
                1932-6203
                1932-6203
                2011
                : 6
                : 9
                Affiliations
                [1 ] Department of Veterinary & Comparative Anatomy, Pharmacology and Physiology College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America. jpanksepp@vetmed.wsu.edu
                Article
                PONE-D-11-02008
                10.1371/journal.pone.0021236
                3168430
                21915252
                ab308142-0853-44e3-a14a-491a41bd10b0
                History

                Comments

                Comment on this article