18
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Evidence that Neurokinin B Controls Basal Gonadotropin-Releasing Hormone Secretion but Is Not Critical for Estrogen-Positive Feedback in Sheep.

      1 , , ,
      Neuroendocrinology
      S. Karger AG

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Loss-of-function mutations in genes encoding kisspeptin or neurokinin B (NKB) or their receptors cause infertility. NKB is coproduced in kisspeptin neurons in the arcuate nucleus (ARC), and these neurons also produce the NKB receptor (NK3R), allowing autosynaptic function. We tested the hypothesis that NKB action in ARC kisspeptin neurons is aligned with increased pulsatile secretion of luteinizing hormone (LH) and/or activation of the estrogen-induced LH surge in ewes.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction.

          The timely secretion of gonadal sex steroids is essential for the initiation of puberty, the postpubertal maintenance of secondary sexual characteristics and the normal perinatal development of male external genitalia. Normal gonadal steroid production requires the actions of the pituitary-derived gonadotropins, luteinizing hormone and follicle-stimulating hormone. We report four human pedigrees with severe congenital gonadotropin deficiency and pubertal failure in which all affected individuals are homozygous for loss-of-function mutations in TAC3 (encoding Neurokinin B) or its receptor TACR3 (encoding NK3R). Neurokinin B, a member of the substance P-related tachykinin family, is known to be highly expressed in hypothalamic neurons that also express kisspeptin, a recently identified regulator of gonadotropin-releasing hormone secretion. These findings implicate Neurokinin B as a critical central regulator of human gonadal function and suggest new approaches to the pharmacological control of human reproduction and sex hormone-related diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Minireview: kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: a central node in the control of gonadotropin-releasing hormone secretion.

            Recently, a subset of neurons was identified in the arcuate nucleus of the hypothalamus that colocalize three neuropeptides, kisspeptin, neurokinin B, and dynorphin, each of which has been shown to play a critical role in the central control of reproduction. Growing evidence suggests that these neurons, abbreviated as the KNDy subpopulation, are strongly conserved across a range of species from rodents to humans and play a key role in the physiological regulation of GnRH neurons. KNDy cells are a major target for steroid hormones, form a reciprocally interconnected network, and have direct projections to GnRH cell bodies and terminals, features that position them well to convey steroid feedback control to GnRH neurons and potentially serve as a component of the GnRH pulse generator. In addition, recent work suggests that alterations in KNDy cell peptides may underlie neuroendocrine defects seen in clinical reproductive disorders such as polycystic ovarian syndrome. Taken together, this evidence suggests a key role for the KNDy subpopulation as a focal point in the control of reproductive function in health and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of gonadotropin-releasing hormone secretion by kisspeptin/dynorphin/neurokinin B neurons in the arcuate nucleus of the mouse.

              Kisspeptin is encoded by the Kiss1 gene, and kisspeptin signaling plays a critical role in reproduction. In rodents, kisspeptin neurons in the arcuate nucleus (Arc) provide tonic drive to gonadotropin-releasing hormone (GnRH) neurons, which in turn supports basal luteinizing hormone (LH) secretion. Our objectives were to determine whether preprodynorphin (Dyn) and neurokinin B (NKB) are coexpressed in Kiss1 neurons in the mouse and to evaluate its physiological significance. Using in situ hybridization, we found that Kiss1 neurons in the Arc of female mice not only express the Dyn and NKB genes but also the NKB receptor gene (NK3) and the Dyn receptor [the kappa opioid receptor (KOR)] gene. We also found that expression of the Dyn, NKB, KOR, and NK3 in the Arc are inhibited by estradiol, as has been established for Kiss1, and confirmed that Dyn and NKB inhibit LH secretion. Moreover, using Dyn and KOR knock-out mice, we found that long-term disruption of Dyn/KOR signaling compromises the rise of LH after ovariectomy. We propose a model whereby NKB and dynorphin act autosynaptically on kisspeptin neurons in the Arc to synchronize and shape the pulsatile secretion of kisspeptin and drive the release of GnRH from fibers in the median eminence.
                Bookmark

                Author and article information

                Journal
                Neuroendocrinology
                Neuroendocrinology
                S. Karger AG
                1423-0194
                0028-3835
                2015
                : 101
                : 2
                Affiliations
                [1 ] Department of Physiology, Monash University, Clayton, Vic., Australia.
                Article
                000377702
                10.1159/000377702
                25677216
                04b69eed-0c09-4766-afc5-dc476ff6c066
                History

                Comments

                Comment on this article